ELECTRONIC SUPPLEMENTARY INFORMATION

Cu^{II}-PDC-bpe frameworks (PDC=2,5-pyridinedicarboxylate, bpe=1,2-di(4-pyridyl)ethylene): mapping of herringbone-type structures

Francisco Llano-Tomé,^a Begoña Bazán,^{a,b*} Miren-Karmele Urtiaga,^a Gotzone Barandika,^c Luis Lezama^{b,d} and María-Isabel Arriortua^{a,b}

^aDepartamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo 644, 48080 Bilbao, Spain.

Email:bego.bazan@ehu.es; Fax: +34-946013500; Tel: +34-946012609

^bBCMaterials Parque Tecnológico de Zamudio, Ibaizabal Bidea, Edificio 500–Planta 1, 48160, Derio, Spain.

^cDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain.

^dDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo 644, 48080 Bilbao, Spain.

Fig. S1. IR spectra for compound **1**. The following bands (cm⁻¹) are marked: 3415 (OH), 1656 and 1608 (aroC-C), 1286 (C-N), 1561 (asCOO), 1428, 1387 and 1352 (sCOO), 833, 770 and 692 (C-H) and 550-534 (Cu-N).

Fig. S2. IR spectra for compound **2**. The following bands (cm⁻¹) are marked: 3410 (OH), 1656 and 1617 (aroC-C), 1281 (C-N), 1569-1560 (asCOO), 1428, 1390 and 1348 (sCOO), 834, 765 and 687 (C-H) and 551-534 (Cu-N).

Fig. S3. Thermal ellipsoid plot (50% of probability) for compound 1.

plot

Fig. S5. Voronoi-Dirichlet representations for the channels observed for compounds 1 and 2.

Fig. S6. Interlayer distances for compounds 1 and 2.

Fig. S7. Distortion modes diagram of a pyramidal based squared coordination environment. In the upper right is a zoom of the distortion for for compound 1 Cu1(green) and Cu2 (green light), and for compound 2 Cu1 (orange).

Fig. S8. Thermogravimetric analysis for compound **1**. Purple and blue ranges show the weight loss intervals.

Fig. S9. Thermogravimetric analysis for compound 2. Purple and blue ranges show the weight loss intervals.

Table S1. Selected bond angles (°) and distances (Å) for compound 1 (distances in bold).

Cu1	02	07	05	N1	N2
N2	91.10(12)	91.38(12)	98.92(12)	170.03(14)	2.030(3)
N1	82.29(13)	95.26(12)	88.46(12)	2.018(3)	
05	88.91(12)	90.66(11)	2.259(3)		
07	177.53(12)	1.947(3)			
02	1.948(3)				

Cu2	04	O9 ⁱⁱⁱ	06	N4 ⁱⁱⁱ	N3
N3	92.03(12)	92.04(12)	98.71(12)	169.05(14)	2.034(3)
N4 ⁱⁱⁱ	94.16(12)	81.63(13)	89.95(12)	2.024(3)	
06	93.33(11)	87.32(11)	2.216(3)		
O 9 ⁱⁱⁱ	175.74(12)	1.970(3)			
04	1.942(3)				

iii) x,y-1,z

Table S2. Selected bond angles (°) and distances (Å) for compound 2 (distances in bold).

Cu1	01	01W	O 3 ⁱ	N1	N2
N2	91.28(11)	98.73(11)	91.96(11)	170.25(11)	2.027(3)
N1	81.98(10)	88.17(11)	94.64(10)	2.010(3)	
O3 ⁱ	176.48(9)	92.45(11)	1.943(2)		
01W	88.43(11)	2.245(3)			
01	1.960(2)				

i) -x+1/2,y-1/2,-z+3/2

Table S3 Details of the crystal data, structural resolution in $P2_1/n$ space group and refinement procedure for compound 1.

Compounds	1
Formula	C _{14.5} H _{16.5} N _{2.5} O ₇ Cu
FW, g∙mol ⁻¹	401.34
Crystal system	Monoclinic
S.G, (n ^o)	$P2_{1}/n$, (15)
<i>a</i> , Å	11.4682(2)
b, Å	8.8977(1)
<i>c,</i> Å	15.6872(2)
β,°	94.074(1)
V, Å ³ ,	1596.69(1)
Z, F(000)	4, 852
$\rho_{obs}, \rho_{cal}, g \cdot cm^{-3}$	1.68(5), 1.66
$\mu, \text{mm}^{-1},$	2.374
Crystal size, mm	0.096 x 0.064 x 0.035
Radiation, λ, Å	1.54184
Temperature, K	100(10)
Reflections collected, unique	11534, 3201
-	$(R_{int} = 0.028)$
Limiting indices	-14<=h<=12
-	-10<=k<=11
	-17<= <i>l</i> <=19
Final R indices	R1 = 0.1101,
$[I > 2\sigma(I)]^a$	wR2 = 0.3149
R indices (all data) ^a	R1 = 0.1123,
	wR2 = 0.3160
Goodness of fit on F^2	1.206
Parameters /restraints	223 / 0
L. Diff. peak and hole (e Å-3)	1.149, -1.509

 Table S4. Interlayer Hydrogen bounds for compound 1.

О-Н	A(0)	O-H(Å)	H…A (Å)	O…A (Å)	О-Н…А (°)
O(1w)-H(34)	O(8)	0.83(4)	1.92(4)	2.739(4)	168(4)
O(1w)-H(35)	O(3w)	0.83(4)	1.81(4)	2.630(4)	166(5)
O(2w)-H(36)	O(1w)	0.82(4)	1.98(4)	2.799(4)	174(4)
O(2w)-H(37)	O(3)	0.82(3)	1.94(3)	2.756(3)	171(4)
O(3w)-H(39)	O(9)	0.82(4)	2.57(4)	3.25(3)	141(4)
O(3w)-H(39)	O(10)	0.82(4)	1.95(4)	2.740(4)	162(4)
O(5)-H(5w)	O(10)	0.82(3)	2.04(4)	2.845(3)	166(5)
C(28)-H(28)	O(2w)	0.99(3)	2.38(3)	3.292(5)	151(2)
O(3w)-H(38)	O(11)	0.830(17)	1.921(15)	2.749(4)	175(5)
С(20)-Н(20)	O(11)	0.88(4)	2.72(4)	3.346(5)	121(3)
C(15)-H(15)	O(11)	0.94(3)	2.546(4)	3.198(5)	126(3)
C(18)-H(18)	O(11)	0.91(3)	2.745(3)	3.303(5)	120(2)

Table S5.	Interlayer	Hydrogen	bounds	for	compound	2.
-----------	------------	----------	--------	-----	----------	----

О-Н	A(0)	O-H(Å)	H…A (Å)	O…A (Å)	O-H ···A (°)
O(1w)-H(1A)	O(4w) x,-1+y,z	0.81(4)	1.97(4)	2.751(9)	160(4)
O(1w)-H(1A)	O(5w)	0.81(4)	2.38(5)	2.74(1)	109(4)
O(1w)-H(1B)	O(2) -1/2-x,-1/2+y,3/2-z	0.82(3)	1.91(4)	2.715(4)	171(5)

Table S6.	Bond	distances	(Å) and	angles (°) for	compound	1

Distances	
C(1)-O(8)	1.230(5)
C(1)-O(7)	1.271(5)
C(1)-C(2)	1.520(5)
C(2)-C(4)	1.397(6)
C(2)-C(3)	1.404(5)
C(3)-N(4)	1.326(5)
C(4)-C(5)	1.390(6)
C(5)-C(6)	1.383(5)
C(6)-N(4)	1.335(5)
C(6)-C(7)	1.525(5)
C(7)-O(10)	1.227(5)
C(7)-O(9)	1.279(5)
C(8)-O(1)	1.235(5)
C(8)-O(2)	1.283(5)
C(8)-C(9)	1.499(5)
C(9)-N(1)	1.369(5)
C(9)-C(10)	1.382(5)
C(10)-C(11)	1.393(6)
C(11)-C(13)	1.383(6)
C(12)-N(1)	1.332(5)
C(12)-C(13)	1.384(5)
C(13)-C(14)	1.511(5)
C(14)-O(3)	1.243(5)
C(14)-O(4)	1.269(5)
C(15)-N(3)	1.346(5)
C(15)-C(18)	1.376(5)
C(16)-N(3)	1.355(5)
C(16)-C(17)	1.367(6)
C(17)-C(26) ⁱ	1.393(6)

C(18)-C(26) ⁱ	1.394(6)
C(19)-N(2)	1.335(5)
C(19)-C(22)	1.395(5)
C(20)-N(2)	1.336(5)
C(20)-C(21)	1.384(6)
C(21)-C(23)	1.386(6)
C(22)-C(23)	1.395(6)
C(23)-C(24)	1.464(5)
C(24)-C(25)	1.335(4)
C(25)-C(26)	1.476(5)
$C(26)-C(17)^{ii}$	1.393(6)
C(26)-C(18) ⁱⁱ	1.394(6)
C(27)-O(11)	1.232(5)
C(27)-N(5)	1.323(5)
C(28)-N(5)	1.449(5)
C(29)-N(5)	1.450(5)
Cu(1)-O(7)	1.947(3)
Cu(1)-O(2)	1.948(3)
Cu(1)-N(1)	2.018(3)
Cu(1)-N(2)	2.030(3)
Cu(1)-O(5)	2.259(3)
Cu(2)-O(4)	1.942(3)
Cu(2)-O(9) ⁱⁱⁱ	1.970(3)
Cu(2)-N(4) ⁱⁱⁱ	2.024(3)
Cu(2)-N(3)	2.034(3)
Cu(2)-O(6)	2.216(3)
N(4)-Cu(2) ^{iv}	2.024(3)
O(9)-Cu(2) ^{iv}	1.970(3)

Angles

O(8)-C(1)-O(7)	126.9(4)	O(4)-C(14)-C(13)	114.4(3)
O(8)-C(1)-C(2)	120.5(3)	N(3)-C(15)-C(18)	122.8(4)
O(7)-C(1)-C(2)	112.6(3)	N(3)-C(16)-C(17)	124.0(4)
C(4)-C(2)-C(3)	118.5(3)	C(16)-C(17)-C(26) ⁱ	119.3(4)
C(4)-C(2)-C(1)	123.1(3)	C(15)-C(18)-C(26) ⁱ	120.2(4)
C(3)-C(2)-C(1)	118.3(3)	N(2)-C(19)-C(22)	122.7(4)
N(4)-C(3)-C(2)	121.6(4)	N(2)-C(20)-C(21)	123.1(4)
C(5)-C(4)-C(2)	119.1(3)	C(20)-C(21)-C(23)	120.0(4)
C(6)-C(5)-C(4)	118.2(4)	C(19)-C(22)-C(23)	119.7(4)
N(4)-C(6)-C(5)	123.0(4)	C(21)-C(23)-C(22)	116.8(4)
N(4)-C(6)-C(7)	114.3(3)	C(21)-C(23)-C(24)	122.7(4)
C(5)-C(6)-C(7)	122.7(4)	C(22)-C(23)-C(24)	120.4(4)
O(10)-C(7)-O(9)	125.7(4)	C(25)-C(24)-C(23)	124.5(3)
O(10)-C(7)-C(6)	119.6(3)	C(24)-C(25)-C(26)	125.3(4)
O(9)-C(7)-C(6)	114.7(3)	C(17)#2-C(26)-C(18 ⁱⁱ	117.1(4)
O(1)-C(8)-O(2)	124.4(4)	C(17)#2-C(26)-C(25)	123.4(4)
O(1)-C(8)-C(9)	119.5(4)	C(18)#2-C(26)-C(25)	119.5(4)
O(2)-C(8)-C(9)	116.1(3)	O(11)-C(27)-N(5)	122.5(4)
N(1)-C(9)-C(10)	121.3(4)	O(7)-Cu(1)-O(2)	177.53(12)
N(1)-C(9)-C(8)	113.3(3)	O(7)-Cu(1)-N(1)	95.26(12)
C(10)-C(9)-C(8)	125.4(4)	O(2)-Cu(1)-N(1)	82.29(13)
C(9)-C(10)-C(11)	119.2(4)	O(7)-Cu(1)-N(2)	91.38(12)
C(13)-C(11)-C(10)	119.3(4)	O(2)-Cu(1)-N(2)	91.10(12)
N(1)-C(12)-C(13)	123.3(4)	N(1)-Cu(1)-N(2)	170.03(14)
C(11)-C(13)-C(12)	118.3(4)	O(7)-Cu(1)-O(5)	90.66(11)
C(11)-C(13)-C(14)	123.6(4)	O(2)-Cu(1)-O(5)	88.91(12)
C(12)-C(13)-C(14)	118.1(3)	N(1)-Cu(1)-O(5)	88.46(12)
O(3)-C(14)-O(4)	126.3(4)	N(2)-Cu(1)-O(5)	98.92(12)
O(3)-C(14)-C(13)	119.2(4)	O(4)-Cu(2)-O(9) ⁱⁱⁱ	175.74(12)

O(4)-Cu(2)-N(4) ⁱⁱⁱ	94.16(12)	C(20)-N(2)-Cu(1)	121.0(3)
O(9)#3-Cu(2)-N(4) ⁱⁱⁱ	81.63(13)	C(15)-N(3)-C(16)	116.5(3)
O(4)-Cu(2)-N(3)	92.03(12)	C(15)-N(3)-Cu(2)	122.1(3)
O(9)#3-Cu(2)-N(3)	92.04(12)	C(16)-N(3)-Cu(2)	121.3(3)
N(4)#3-Cu(2)-N(3)	169.05(14)	C(3)-N(4)-C(6)	119.6(3)
O(4)-Cu(2)-O(6)	93.33(11)	C(3)-N(4)-Cu(2) ^{iv}	128.0(3)
O(9)#3-Cu(2)-O(6)	87.32(11)	C(6)-N(4)-Cu(2) ^{iv}	111.7(3)
N(4)#3-Cu(2)-O(6)	89.95(12)	C(27)-N(5)-C(28)	121.3(3)
N(3)-Cu(2)-O(6)	98.71(12)	C(27)-N(5)-C(29)	123.8(3)
C(12)-N(1)-C(9)	118.4(3)	C(28)-N(5)-C(29)	114.9(3)
C(12)-N(1)-Cu(1)	129.6(3)	C(8)-O(2)-Cu(1)	115.0(3)
C(9)-N(1)-Cu(1)	110.6(3)	C(14)-O(4)-Cu(2)	123.6(3)
C(19)-N(2)-C(20)	117.7(3)	C(1)-O(7)-Cu(1)	128.9(3)
C(19)-N(2)-Cu(1)	121.3(3)	C(7)-O(9)-Cu(2) ^{iv}	115.7(2)

Symmetry codes: i) x-1/2,-y+1,z+1/2; ii) x+1/2,-y+1,z-1/2; iii) x,y-1,z; iv) x,y+1,z

Table S7. Bond distances (Å) and angles (°) for compound 2.

Distances	
Cu(1)-O(3) ⁱ	1.943(2)
Cu(1)-O(1)	1.960(2)
Cu(1)-N(1)	2.010(3)
Cu(1)-N(2)	2.027(3)
Cu(1)-O(1W)	2.245(3)
C(1)-N(1)	1.326(4)
C(1)-C(2)	1.391(5)
C(1)-H(1)	0.9500
C(2)-C(3)	1.384(5)
C(2)-C(7)	1.508(5)
C(3)-C(4)	1.396(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.371(5)
C(4)-H(4)	0.9500
C(5)-N(1)	1.350(4)
C(5)-C(6)	1.509(5)
C(6)-O(2)	1.230(4)
C(6)-O(1)	1.279(4)
C(7)-O(4)	1.232(4)
C(7)-O(3)	1.275(4)
C(8)-N(2)	1.335(5)
C(8)-C(9)	1.390(5)
C(8)-H(8)	0.9500
C(9)-C(10)	1.403(6)
С(9)-Н(9)	0.9500
C(10)-C(11)	1.390(6)
C(10)-C(13)	1.4/1(5)
C(11)-C(12)	1.377(5)
C(11)-H(11)	0.9500
C(12)-N(2)	1.353(5)
C(12)-H(12) C(12)-C(12)	0.9500
$C(13)-C(13)^{m}$	1.326(8)
C(13)-H(13) $O(2) C_{11}(1)$	0.9500
$O(3)-Cu(1)^{m}$	1.943(2)
O(1W) - H(1B) O(1W) - H(1A)	0.819(10) 0.816(10)
O(1W)-H(1A)	0.810(10)

Angles

Aligits			
O(3) ⁱ -Cu(1)-O(1)	176.48(9)	N(1)-C(5)-C(4)	121.8(3)
O(3) ⁱ -Cu(1)-N(1)	94.64(10)	N(1)-C(5)-C(6)	113.4(3)
O(1)-Cu(1)-N(1)	81.98(10)	C(4)-C(5)-C(6)	124.7(3)
$O(3)^{i}-Cu(1)-N(2)$	91.96(11)	O(2)-C(6)-O(1)	124.3(3)
O(1)-Cu(1)-N(2)	91.28(11)	O(2)-C(6)-C(5)	120.0(3)
N(1)-Cu(1)-N(2)	170.25(11)	O(1)-C(6)-C(5)	115.8(3)
O(3) ⁱ -Cu(1)-O(1W)	92.45(11)	O(4)-C(7)-O(3)	126.2(3)
O(1)-Cu(1)-O(1W)	88.43(11)	O(4)-C(7)-C(2)	120.6(3)
N(1)-Cu(1)-O(1W)	88.17(11)	O(3)-C(7)-C(2)	113.3(3)
N(2)-Cu(1)-O(1W)	98.73(11)	N(2)-C(8)-C(9)	122.6(4)
N(1)-C(1)-C(2)	122.7(3)	N(2)-C(8)-H(8)	118.7
N(1)-C(1)-H(1)	118.6	C(9)-C(8)-H(8)	118.7
C(2)-C(1)-H(1)	118.6	C(8)-C(9)-C(10)	119.8(4)
C(3)-C(2)-C(1)	118.2(3)	C(8)-C(9)-H(9)	120.1
C(3)-C(2)-C(7)	123.2(3)	С(10)-С(9)-Н(9)	120.1
C(1)-C(2)-C(7)	118.6(3)	C(11)-C(10)-C(9)	117.0(3)
C(2)-C(3)-C(4)	119.0(3)	C(11)-C(10)-C(13)	122.9(4)
C(2)-C(3)-H(3)	120.5	C(9)-C(10)-C(13)	120.2(4)
C(4)-C(3)-H(3)	120.5	C(12)-C(11)-C(10)	119.9(4)
C(5)-C(4)-C(3)	119.1(3)	С(12)-С(11)-Н(11)	120.0
C(5)-C(4)-H(4)	120.4	С(10)-С(11)-Н(11)	120.0
C(3)-C(4)-H(4)	120.4	N(2)-C(12)-C(11)	122.9(4)

N(2)-C(12)-H(12)	118.5	C(8)-N(2)-C(12)	117.8(3)
C(11)-C(12)-H(12)	118.5	C(8)-N(2)-Cu(1)	121.2(2)
$C(13)^{ii}-C(13)-C(10)$	124.8(5)	C(12)-N(2)-Cu(1)	121.0(2)
C(13) ⁱⁱ -C(13)-H(13)	117.6	C(6)-O(1)-Cu(1)	115.1(2)
С(10)-С(13)-Н(13)	117.6	C(7)-O(3)-Cu(1) ⁱⁱⁱ	127.3(2)
C(1)-N(1)-C(5)	119.1(3)	Cu(1)-O(1W)-H(1B)	114(4)
C(1)-N(1)-Cu(1)	128.5(2)	Cu(1)-O(1W)-H(1A)	107(4)
C(5)-N(1)-Cu(1)	111.7(2)	H(1B)-O(1W)-H(1A)	111(3)

Symmetry codes: i) -x+1/2,y-1/2,-z+3/2; ii) -x,-y,-z+2; iii) -x+1/2,y+1/2,-z+3/2

Table S8. Atomic coordinates $(x \cdot 10^4)$ and equivalent isotropic displacement parameters of compound **1**.

	X	Y	Z	U(eq)
C(1)	2496(3)	698(4)	4919(3)	11(1)
C(2)	1434(3)	1389(4)	5295(2)	12(1)
C(3)	1553(3)	2811(4)	5679(2)	11(1)
C(4)	342(4)	687(4)	5264(3)	14(1)
C(5)	-576(3)	1396(4)	5635(3)	15(1)
C(6)	-373(3)	2795(4)	6000(2)	12(1)
C(7)	-1310(3)	3667(4)	6435(2)	13(1)
C(8)	6948(3)	-1194(4)	5131(2)	15(1)
C(9)	6006(3)	-2112(4)	5497(2)	13(1)
C(10)	6173(3)	-3471(4)	5914(3)	17(1)
C(11)	5220(4)	-4185(4)	6241(3)	14(1)
C(12)	4015(3)	-2203(4)	5670(2)	13(1)
C(13)	4121(3)	-3554(4)	6107(2)	11(1)
C(14)	3030(4)	-4240(4)	6430(3)	13(1)
C(15)	-633(3)	-1919(4)	7309(2)	16(1)
C(16)	1260(3)	-1327(4)	7050(3)	16(1)
C(17)	1198(4)	32(5)	7450(3)	18(1)
C(18)	-768(4)	-558(4)	7707(3)	18(1)
C(19)	6360(3)	3223(4)	4331(3)	18(1)
C(20)	4385(4)	3615(5)	4234(3)	20(1)
C(21)	4510(4)	5012(5)	3863(3)	18(1)
C(22)	6557(4)	4607(5)	3950(3)	21(1)
C(23)	5613(4)	5546(4)	3716(2)	14(1)
C(24)	5805(3)	7007(5)	3321(2)	16(1)
C(25)	4990(4)	8073(4)	3201(2)	15(1)
C(26)	5158(4)	9543(4)	2791(2)	14(1)
C(27)	1024(4)	1856(4)	3005(3)	26(1)
C(28)	-1026(4)	1401(5)	3166(3)	30(1)
C(29)	-113(3)	3687(4)	3762(3)	24(1)
Cu(1)	5046(1)	694(1)	5016(1)	11(1)
Cu(2)	544(1)	-4339(1)	6380(1)	10(1)
N(1)	4921(3)	-1470(4)	5385(2)	12(1)
N(2)	5290(3)	2721(4)	4462(2)	12(1)
N(3)	368(3)	-2329(4)	6974(2)	14(1)
N(4)	659(3)	3491(4)	6008(2)	12(1)
N(5)	30(3)	2287(4)	3308(2)	22(1)
O(1)	7957(2)	-1686(3)	5159(2)	24(1)
O(2)	6630(2)	77(3)	4806(2)	16(1)
O(1W)	738(2)	-2387(3)	3826(2)	24(1)
O(3)	3121(3)	-5110(3)	7051(2)	18(1)
O(2W)	4014(3)	2094(3)	/481(2)	28(1)
O(4)	2084(2)	-3808(3)	6035(2)	13(1)
O(3W)	1884(3)	-4317(3)	2929(2)	30(1)
0(5)	5083(2)	12/5(3)	03/2(2)	20(1)
U(6)	-552(2)	-3/60(3)	5118(2)	18(1)
O(1)	3433(2)	122/(3)	5250(2)	14(1) 17(1)
	2377(3)	-278(3)	4377(2) 6712(2)	$\frac{1}{(1)}$
0(9)	-707(2) 2280(2)	4903(3)	0/13(2) 6486(2)	14(1) 21(1)
0(11)	-2200(2) 1926(3)	2608(3)	3090(2)	$\frac{21(1)}{34(1)}$
UII	1740(3)	2000(3)	5077(4)	J+(1)

 Table S9. Anisotropic displacement parameters for compound 1.

	U11	U22	U33	U23	U13	U12
C(1)	10(2)	6(2)	18(2)	2(1)	1(1)	0(1)
C(2)	12(2)	10(2)	15(2)	0(1)	4(1)	1(1)
C(3)	11(2)	10(2)	13(2)	1(1)	3(1)	-2(1)
C(4)	14(2)	11(2)	16(2)	-1(1)	0(1)	0(1)
C(5)	12(2)	15(2)	19(2)	-1(1)	4(1)	-3(1)
C(6)	9(2)	12(2)	14(2)	-1(1)	1(1)	2(1)
C(7)	15(2)	13(2)	12(2)	-1(1)	4(1)	0(1)
C(8)	12(2)	12(2)	20(2)	-2(1)	2(1)	0(1)
C(9)	11(2)	12(2)	17(2)	-1(1)	1(1)	0(1)
C(10)	12(2)	14(2)	24(2)	2(1)	-2(1)	4(1)
C(11)	17(2)	10(2)	15(2)	2(1)	0(1)	-1(1)
C(12)	10(2)	10(2)	20(2)	1(1)	1(1)	-1(1)
C(13)	11(2)	12(2)	11(2)	-2(1)	-1(1)	-2(1)
C(14)	17(2)	9(2)	13(2)	-3(1)	5(1)	-3(1)
C(15)	17(2)	13(2)	19(2)	-3(1)	4(1)	-4(1)
C(16)	12(2)	13(2)	24(2)	-5(1)	2(1)	-2(1)
C(17)	16(2)	14(2)	24(2)	-3(2)	4(1)	-3(1)
C(18)	16(2)	15(2)	24(2)	-5(1)	7(1)	-1(1)
C(19)	13(2)	15(2)	28(2)	5(2)	8(1)	2(1)
C(20)	13(2)	18(2)	29(2)	6(2)	2(2)	-2(1)
C(21)	12(2)	15(2)	26(2)	8(2)	0(1)	3(1)
C(22)	13(2)	19(2)	33(2)	8(2)	9(2)	1(1)
C(23)	17(2)	12(2)	12(2)	2(1)	4(1)	-2(1)
C(24)	20(2)	14(2)	15(2)	4(1)	5(1)	-1(1)
C(25)	19(2)	11(2)	14(2)	1(1)	4(1)	-3(1)
C(26)	22(2)	8(1)	12(2)	1(1)	-1(1)	2(1)
C(27)	26(2)	23(2)	28(2)	4(2)	2(2)	1(2)
C(28)	26(2)	33(2)	31(2)	-2(2)	-2(2)	0(2)
C(29)	27(2)	19(2)	24(2)	2(1)	1(2)	2(1)
Cu(1)	8(1)	8(1)	16(1)	2(1)	3(1)	1(1)
Cu(2)	9(1)	8(1)	14(1)	-2(1)	3(1)	-1(1)
N(1)	11(2)	10(1)	15(2)	1(1)	4(1)	l(1)
N(2)	12(1)	10(1)	15(1)	2(1)	2(1)	0(1)
N(3)	12(1)	14(2)	15(1)	-2(1)	2(1)	-1(1)
N(4) N(5)	11(2)	$\frac{\delta(1)}{22(2)}$	10(2)	-1(1)	-1(1)	0(1)
N(5)	24(2)	23(2) 16(1)	10(2)	-3(1)	-1(1)	5(1)
O(1)	11(1) 14(1)	10(1) 11(1)	$\frac{4}{(2)}$	$\frac{3(1)}{4(1)}$	(1)	$\frac{3(1)}{1(1)}$
O(2)	$\frac{14(1)}{24(1)}$	20(1)	$\frac{24(1)}{10(1)}$	4(1)	0(1) 5(1)	7(1)
O(1W)	$\frac{24(1)}{19(1)}$	$\frac{29(1)}{18(1)}$	19(1) 18(1)	-4(1)	$\frac{3(1)}{1(1)}$	-7(1)
O(2W)	35(2)	23(1)	24(1)	$\frac{1}{1}$	-1(1)	2(1)
O(4)	9(1)	$\frac{23(1)}{11(1)}$	19(1)	-1(1)	2(1)	2(1)
O(3W)	34(2)	26(1)	31(2)	2(1)	13(1)	1(1)
0(5)	17(1)	20(1)	22(1)	-3(1)	0(1)	-4(1)
0(6)	17(1)	21(1)	16(1)	2(1)	5(1)	6(1)
$\mathbf{O}(7)$	10(1)	11(1)	21(1)	$\frac{1}{1}(1)$	3(1)	0(1)
O(8)	17(1)	16(1)	18(1)	-4(1)	2(1)	4(1)
O (9)	11(1)	12(1)	20(1)	-2(1)	6(1)	-3(1)
O(10)	13(1)	21(1)	29(2)	-7(1)	9(1)	-6(1)
O(11)	27(2)	30(2)	47(2)	7(1)	13(1)	3(1)

	Х	Y	Ζ	U(eq)
Cu(1)	233(1)	6851(1)	8200(1)	23(1)
C(1)	1231(3)	9711(4)	7485(2)	27(1)
C(2)	1121(3)	11110(3)	7088(2)	27(1)
C(3)	15(3)	11772(4)	7027(2)	30(1)
C(4)	-932(3)	11037(4)	7392(2)	31(1)
C(5)	-748(3)	9659(4)	7773(2)	26(1)
C(6)	-1684(3)	8753(4)	8203(2)	28(1)
C(7)	2204(3)	11821(3)	6729(2)	28(1)
C(8)	-1043(3)	4319(4)	8955(2)	34(1)
C(9)	-1216(4)	2927(4)	9337(3)	38(1)
C(10)	-243(4)	1996(4)	9543(2)	35(1)
C(11)	867(4)	2546(4)	9359(2)	38(1)
C(12)	970(3)	3949(4)	8996(2)	35(1)
C(13)	-419(4)	513(4)	9935(2)	39(1)
N(1)	324(2)	8995(3)	7808(2)	25(1)
N(2)	28(3)	4832(3)	8782(2)	29(1)
O(1)	-1353(2)	7475(3)	8505(2)	29(1)
O(2)	-2690(2)	9257(3)	8245(2)	42(1)
O(3)	3168(2)	11361(3)	7107(2)	30(1)
O (4)	2109(2)	12733(3)	6120(2)	39(1)
O(1W)	-520(3)	6282(3)	6842(2)	43(1)
O(4W)	988(10)	15304(8)	5600(4)	95(3)
O(3W)	-841(9)	8733(11)	5538(6)	93(3)
O(5W)	-245(10)	6538(12)	5061(7)	100(3)
O(2W)	3396(5)	3205(10)	10200(4)	70(2)

Table S10. Atomic coordinates $(x \cdot 10^4)$ and equivalent isotropic displacement parameters of compound 2.

 Table S11. Anisotropic displacement parameters for compound 2.

	U11	U22	U33	U23	U13	U12
Cu(1)	22(1)	16(1)	31(1)	1(1)	0(1)	-1(1)
C(1)	21(1)	21(2)	37(2)	-1(1)	-1(1)	-1(1)
C(2)	26(2)	21(2)	32(2)	-2(1)	-3(1)	-1(1)
C(3)	33(2)	24(2)	34(2)	4(1)	-4(1)	2(1)
C(4)	23(2)	29(2)	40(2)	3(1)	-4(1)	6(1)
C(5)	22(2)	23(2)	31(2)	-2(1)	-2(1)	1(1)
C(6)	26(2)	25(2)	32(2)	-2(1)	0(1)	1(1)
C(7)	28(2)	21(2)	35(2)	-3(1)	1(1)	-1(1)
C(8)	41(2)	24(2)	36(2)	0(1)	5(1)	-2(1)
C(9)	50(2)	24(2)	40(2)	0(1)	10(2)	-7(2)
C(10)	59(2)	20(2)	26(2)	0(1)	3(2)	-4(2)
C(11)	54(2)	24(2)	35(2)	6(1)	-6(2)	0(2)
C(12)	40(2)	26(2)	38(2)	5(1)	-2(2)	-2(1)
C(13)	64(2)	23(2)	29(2)	2(1)	4(2)	-8(2)
N(1)	22(1)	18(1)	34(1)	-1(1)	-2(1)	0(1)
N(2)	39(2)	21(1)	28(1)	-1(1)	1(1)	-4(1)
O(1)	25(1)	24(1)	36(1)	0(1)	2(1)	-1(1)
O(2)	25(1)	37(1)	64(2)	4(1)	6(1)	5(1)
O(3)	25(1)	20(1)	44(1)	-1(1)	1(1)	-1(1)
O(4)	37(1)	38(1)	41(1)	11(1)	2(1)	-2(1)
O(1W)	43(2)	51(2)	36(1)	-6(1)	0(1)	-18(1)
O(4W)	197(10)	59(4)	33(3)	17(3)	47(4)	79(5)
O(3W)	103(7)	87(6)	87(6)	-29(5)	-1(5)	20(5)
O(5W)	105(7)	116(8)	78(6)	33(6)	-5(5)	-21(6)
O(2W)	22(3)	152(8)	36(3)	19(4)	-6(2)	-12(3)

	Х	Y	Z	U(eq)
H(4)	228	-262	4992	16
H(10)	6928	-3912	5978	20
H(12)	3257	-1779	5569	16
H(22)	7330	4909	3849	26
H(28A)	-1668	1896	3436	45
H(28B)	-897	399	3414	45
H(28C)	-1227	1308	2550	45
H(29A)	-920	3768	3926	35
H(29B)	59	4533	3391	35
H(29C)	425	3707	4276	35
H(7W)	159	-3392	4805	27
H(3)	2240(50)	3310(60)	5660(40)	41
H(5)	-1270(50)	1010(60)	5640(40)	41
H(5W)	6330(20)	1670(60)	6440(30)	41
H(6W)	5220(30)	1650(60)	6690(30)	41
H(8W)	-820(50)	-3140(70)	5160(40)	41
H(11)	5350(50)	-5020(60)	6540(40)	41
H(15)	-1290(50)	-2620(60)	7260(40)	41
H(16)	1880(50)	-1470(60)	6740(40)	41
H(17)	1800(50)	640(70)	7470(40)	41
H(18)	-1470(50)	-380(60)	7950(40)	41
H(19)	6980(50)	2620(60)	4550(30)	41
H(20)	3640(50)	3210(60)	4310(30)	41
H(21)	3850(60)	5480(60)	3690(40)	41
H(24)	6620(50)	7230(60)	3220(40)	41
H(25)	4300(50)	7960(60)	3350(40)	41
H(34)	1160(40)	-1660(40)	3970(30)	41
H(35)	1180(40)	-3000(40)	3610(30)	41
H(36)	4480(40)	2200(50)	7900(20)	41
H(37)	3810(40)	2940(30)	7320(30)	41
H(38)	1900(50)	-5239(16)	3010(30)	41
H(39)	2230(40)	-4120(50)	2500(20)	41
H(27)	1020(50)	820(60)	2820(40)	41

Table S12. Fractional Atomic coordinates $(x10^4)$ and isotropic thermal factors $(x10^3)$ of hydrogen atoms for compound 1.

Table S13. Fractional Atomic coordinates $(x10^4)$ and isotropic thermal factors $(x10^3)$ of hydrogen atoms for compound **2**.

	Х	Y	Z	U(eq)
H(1)	1987	9248	7526	32
H(3)	-99	12712	6743	36
H(4)	-1693	11485	7376	37
H(8)	-1713	4929	8811	40
H(9)	-1991	2608	9458	45
H(11)	1552	1955	9485	46
H(12)	1738	4313	8890	42
H(13)	-1190	272	10109	46
H(1B)	-1100(30)	5740(40)	6840(40)	65
H(1A)	10(30)	5900(50)	6580(30)	65