ESI

Mutual transformation between crystalline phases and dielectric properties of coordination polymers with formula of \([\text{Cd}(\text{N-methylimidazole})_2(\text{H}_2\text{O})_x(\text{glutarate})]\cdot\text{nH}_2\text{O} \text{ (x = 0 or 1; n = 0 or 4)}\)

Chen Xue,a,b Heng Xu,*b Rong-Yi Huang,b Xiao-Ming Ren*ac

a State Key Laboratory of Materials-Oriented Chemical Engineering and College of Science, Nanjing University of Technology, Nanjing 210009

b Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, P. R. China

c College of Materials Science and Engineering, Nanjing University of Technology, Nanjing 210009

Tel.: +86 25 58139476
Fax: +86 25 58139481
Email: xmren@njtech.edu.cn
Figure S1 PXRD profiles of (a) the experimental and the simulated patterns for 1 (b) the experimental and the simulated patterns for 2 (c) the experimental pattern for 3 and the simulated pattern for 2 (d) the simulated patterns for 1 and 2 where the differences are obvious between the simulated PXRD patterns of 1 and 2.

Figure S2 Temperature-dependent dielectric constants for 3 obtained from the annealed at 50 °C and the swept by N₂ flow, respectively, where the slight difference of two plots between -30 and 0 °C arises from the difference of a little amount of water in the samples.