Supporting information for

Auxiliary ligand aided tuning of aggregation in transition metal benzoates: Isolation of four different types of coordination polymers

Subarna Banerjee,^a Palanisamy Rajakannu,^a Ray. J. Butcher,^b and Ramaswamy Murugavel*^a

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 017, India. E-mail address: <u>rmv@chem.iitb.ac.in</u>; Tel: +91 22 2576 7163; Fax: +91 22 2572 3480/2576 7152. ^b Department of Chemistry, Howard University, Washington, DC 20059, USA.

Contents

- 1) **Fig. S1.** ¹H NMR spectrum of **3** in DMSO- d_6 .
- 2) Fig. S2. ¹³C NMR spectrum of 3 in DMSO- d_6 .
- 3) Fig. S3. ¹H NMR spectrum of 7 in DMSO- d_6 .
- 4) **Fig. S4.** ¹³C NMR spectrum of **7** in DMSO- d_6 .
- 5) **Fig. S5.** ESI-MS spectra of **1-3** in DMSO+CH₃OH mixture.
- 6) **Table S1.** Selected structural parameters observed in $[Cu(L^1)_2(AL^1)(H_2O)](H_2O)$ (1).
- Table S2. Comparison of copper-phenanthroline complexes with -O and -N coordination.
- 8) Fig. S6. π - π interactions and CH- π interactions in 1.
- 9) **Table S3.** Selected structural parameters observed in $[Mn_2(L^1)_4(AL^1)_2](CH_3OH)$ (2).
- 10) **Table S4.** Comparison of manganese-phenanthroline complexes with –O and –N coordination with **2** and **4**.
- 11) **Table S5.** Selected structural parameters observed in $[Zn_2(L^1)_4(AL^1)_2](CH_3OH)$ (3).
- 12) **Table S6.** Comparison of zinc-phenanthroline complexes with –O and –N coordination with **3** and **6**.

- 13) **Table S7.** Selected structural parameters observed in $[Mn(L^3)_2(AL^1)(H_2O)]$ (4).
- 14) **Table S8.** Selected structural parameters observed in $[Cu(L^3)_2(AL^1)(H_2O)]$ (6).
- 15) Fig. S7. Helical structure of $[Zn(tmba)_2(1,10-phen)(H_2O)]$ (6).
- 16) **Fig. S8.** ¹H NMR spectra of **8** (top) and **10** (middle) with free 4,4'-bpy (bottom) ligand in DMSO- d_6 .
- 17) **Table S9.** Selected bond length and angles of $[Zn(L^2)_2(AL^2)]$ (8).
- 18) Fig. S9. ¹H NMR spectrum of 8 in DMSO- d_6 .
- 19) Fig. S10. ¹³C NMR spectrum of 8 in DMSO- d_6 .
- 20) Fig. S11. ¹H NMR spectrum of 10 in DMSO- d_6 .
- 21) Fig. S12. ¹³C NMR spectrum of 10 in DMSO- d_6 .
- 22) **Table S10.** Comparison of zinc-4,4'-bpy complexes with –O and –N coordination.
- 23) **Table S11.** Selected structural parameters observed in $[Mn(L^3)(OAc)(AL^2)]$ (9).
- 24) Fig. S13. Molecular structure of zinc polymer 10 and octahedral coordination view of zinc atom.
- 25) **Fig. S14.** Rail-road like polymeric view of zinc complex **10** (top) and view of rectangle units are repeated in the polymer with rectangle size (bottom).
- 26) **Table S12.** Selected structural parameters observed in $[Zn(L^3)(OAc)(AL^2)]$ (10).
- 27) Fig. S15. ¹H NMR spectrum of 11 in DMSO- d_6 .
- 28) **Fig. S16.** PXRD pattern of **2**.
- 29) **Fig. S17.** PXRD pattern of **8**.
- 30) **Fig. S18.** PXRD pattern of **10**.
- 31) **Fig. S16.** PXRD pattern of **11**.

Fig. S1. ¹H NMR spectrum of 3 in DMSO- d_6 .

Fig. S2. ¹³C NMR spectrum of 3 in DMSO- d_6 .

Fig. S3. ¹H NMR spectrum of 7 in DMSO- d_6 .

Fig. S4. ¹³C NMR spectrum of 7 in DMSO- d_6 .

Fig. S5. ESI-MS spectra of 1-3 (from top to bottom) in DMSO+CH₃OH mixture.

	Bond lengths (Å)							
Cu(1)–O(1)	1.928(2)	O(1)–C(1)	1.279(4)					
Cu(1)–O(3)	1.948(2)	O(2)–C(1)	1.231(4)					
Cu(1)–N(1)	2.013(3)	O(3)–C(12)	1.275(4)					
Cu(1)–N(2)	2.033(3)	O(4)–C(12)	1.229(4)					
Cu(1)–O(5)	2.296(3)	O(5)–H(5A)	0.71(4)					
N(1)-C(23)	1.328(5)	O(5)-H(5B)	0.81(6)					
	Bond angles (°)							
O(1)–Cu(1)–O(3)	90.2(1)	C(27)–N(1)–Cu(1)	113.6(2)					
O(1)-Cu(1)-N(1)	169.0(1)	C(34)-N(2)-C(31)	117.9(3)					
O(3)-Cu(1)-N(1)	92.0(1)	C(34)–N(2)–Cu(1)	129.3(2)					
O(1)-Cu(1)-N(2)	91.9(1)	C(31)–N(2)–Cu(1)	112.7(2)					
O(3)–Cu(1)–N(2)	152.1(1)	C(1)–O(1)–Cu(1)	127.9(2)					
N(1)-Cu(1)-N(2)	81.2(1)	C(12)–O(3)–Cu(1)	128.2(2)					
O(1)-Cu(1)-O(5)	97.5(1)	Cu(1)-O(5)-H(5A)	94(4)					
O(3)-Cu(1)-O(5)	98.3(1)	Cu(1)-O(5)-H(5B)	87(4)					
N(1)-Cu(1)-O(5)	92.9(1)	H(5A)-O(5)-H(5B)	120(5)					
N(2)-Cu(1)-O(5)	108.9(1)	H(6A)-O(6)-H(6B)	109(4)					

Table S1. Selected structural parameters observed in $[Cu(L^1)_2(AL^1)(H_2O)](H_2O)$ (1).

Compound	Geometry	Cu–O	Cu–N	Cu–O	<n-cu-n< th=""><th>Nature of</th><th>Type of</th><th>Ref.*</th></n-cu-n<>	Nature of	Type of	Ref.*
	around Cu	(carboxy)	(hc)*	(aqua)	ഀ	COO-	structure	
		(Å)	(Å)	(Å)				
$[Cu(L^3)_2(AL^1)(H_2O)]$ (4)	distorted O _h	1.947(5)	2.015(5), 2.027(5)	2.005(5)	81.5(2)	monodentate	3-D network	this work
[CuCl(phen)(C ₈ H ₄ NO ₂)	sq. pyramidal	1.976(2)	_	_	_	monodentate	1–D network	17a
$(H_2O)] \cdot H_2O^a$								
[CuCl(phen)(C ₇ H ₇ O ₃ S)	distorted sq.	_	2.006(3), 2.028(3)	1.984(3)	81.2(1)	_	Supra	17b
(H ₂ O)] ^b	pyramidal						molecular	
[Cu(HCO ₃)(phen) ₂]ClO ₄	tetragonal	1.998(11)	2.05(1), 1.987(11),	_	82.2(3), 80.9(3)	monodentate	_	17c
	pyramidal		1.988(11), 2.17(1)					
[Cu(HCO ₃)(phen) ₂]ClO ₄	distorted TBP	2.359(3)	1.997(2), 2.119(2)	_	80.68(8)	bidentate	_	17c
[Cu(phen)(L-asp)	elongated	2.560(3)	2.020, 1.994	2.446(3)	82.0(1)	monodentate	_	17d
(H ₂ O)]4H ₂ O ^c	rhombic O _h							
Glycylglycinato(phen)	distorted sq.	2.008(4)	2.009(5), 2.275(5)	_	78.3(2)	monodentate	polymeri-c	17e
Cu ^{II} trihydrate	pyramidal						lattice	
[Cu(pAB)	distorted O _h	1.946(4),	2.012(5), 2.019(5)	2.272(5)	82.1(3)	bidentate	dimeric	17f
$(phen)(H_2O)]_2(NO_3)_2 \cdot 2p$		1.936(4)						
ABH·2H ₂ O ^d								
[Cu(phen)(ox)(H ₂ O)] ^e	distorted sq.	1.937(2),	2.005(2), 2.011(2)	2.221(2)	82.3(1)	monodentate	3-D	17g
	pyramidal	1.944(2)						

Table S2 Comparison of copper-phenanthroline complexes with –O and –N coordination.

*hc: heterocyclic; ^a C₈H₄NO₂: 4-cyanobenzoate; ^b C₇H₇O₃S: p-toluene sulfonate; ^c L-asp: L-aspartate; ^d pAB: 4-aminobenzoate; pABH: 4-aminobenzoic acid; ^e ox: oxalate; ^f sal: salicylate; ^g bdoaH₂: benzene-1,2-dioxyacetic acid; ^h mal: malonate.

* References are included in main text.

Fig. S6 π - π interactions and CH- π interactions in 1.

Table S3 Selected structural parameters observed in $[Mn_2(L^1)_4(AL^1)_2](CH_3OH)$ (2).

Bond lengths (Å)						
N(1)-Mn(01)	2.273(7)	C(16)-N(1)	1.364(6)			
N(2)-Mn(01)	2.296(7)	C(20)-N(2)	1.356(5)			
O(2)-Mn(01)	2.114(8)	C(23)-N(2)	1.330(6)			
O(3)-Mn(01)	2.062(8)	C(7)-O(1)	1.240(7)			
O(4)-Mn(01)	2.126(6)	C(7)-O(2)	1.269(6)			
C(12)-N(1)	1.330(6)	C(30)-O(3)	1.260(6)			
	Bo	ond angles (°)				
C(12)-N(1)-Mn(01)	125.5(3)	O(3)-Mn(01)-O(2)	137.1(2)			
C(16)-N(1)-Mn(01)	116.8(3)	O(3)-Mn(01)-O(4)	96.6(2)			
C(23)-N(2)-C(20)	117.9(3)	O(2)-Mn(01)-O(4)	87.8(3)			
C(23)-N(2)-Mn(01)	125.6(2)	O(3)-Mn(01)-N(1)	86.9(3)			
C(20)-N(2)-Mn(01)	115.8(3)	O(2)-Mn(01)-N(1)	105.1(2)			
C(7)-O(2)-Mn(01)	100.9(3)	O(4)-Mn(01)-N(1)	156.92(9)			
C(30)-O(3)-Mn(01)	154.4(2)	O(3)-Mn(01)-N(2)	130.78(13)			

Compound	Α	Mn-O	Mn–N	Mn-O	N…N	N-Mn-N	nature	Str. type	Ref.*
		(carboxy)	(hc)*	(aqua)	(Å)	(°)	of COO-		
		(Å)	(Å)	(Å)					
$[Mn_2(L^1)_4(AL^1)_2](CH_3OH)$ (2)	*4	2.126, 2.114,	2.297, 2.274	-	2.701	72.44	Mono &	Dimeric	this
		2.062					bidentate		work
$[Mn(L^3)_2(AL^1)(H_2O)]$ (4)	*1	2.099(1)	2.247(1), 2.244(1)	2.220(1)	2.716	74.43(5)	#1	3-D	this
									work
[Mn(PhCOO)(phen) ₂ (H ₂ O)](ClO ₄)	*1	2.124(3)	2.261(3), 2.303(3)	2.156(3)	2.702(1),	73.3(1)-	#1	_	18a
(dmf) ^a					2.709(2)	72.4(1)			
$\{[Mn(5-HIA)(phen)]H_2O\}_n^b$	*1	_	_	_	_	_	#2	Polymeric	18b
								chain	
[Mn(ClCH ₂ COO)(phen) ₂ (H ₂ O)]ClO ₄	*2	2.119(3)	2.243(3), 2.375(4)	2.182(3)	2.700(3),	71.4(1),7	#1	Dimeric	18c
					2.692(3)	3.1(1)			
$[Mn_2(C_4H_4O_4)_2(phen)_2(H_2O)_4]2H_2O^{\circ}$	*1	2.123(2),2.180	2.307(2), 2.308(2)	2.265(2)-	_	72.05(6)	#3	2-D layer	18d
		(2)		2.243(2)					
$[Mn(phen)_2(H_2O)_2](fum)(4H_2O)^{d}$	*3	_	2.269(1), 2.273(1)	2.130(1),	_	73.22(4)	_	_	18e
				2.143(1)					
[Mn(phen)(bet)(NO ₃)(H ₂ O) ₂](NO ₃)(H	*1	2.194(4)	2.275(3), 2.302(4)	2.190(3),	_	72.4(1)	#1	Monomeric	18f
₂ O) ^e				2.195(3)				species	
$[Mn_2(phen)_4(ta)(H_2O)_2](ClO_4))_2^{f}$	*1	2.120(3)	2.291(4), 2.256(4),	2.141(4)	_	73.0(2)	#3	_	18g
			2.272(4), 2.281(4)						

Table S4. Comparison of manganese-phenanthroline complexes with –O and –N coordination with 2 and 4.

A: geometry around Mn; *hc: heterocyclic; * dmf: dimethylformamide; * HIA: 5-hydroxy-isophthalic acid (the acid is dianionic in the compound); $(C_4H_4O_4)^2$: succinate anion; * fumH₂: fumaric acid; * bet: betaine (Me₃N^{\Box}CH2CO2^{- \Box}; \Box f ta: terephthalate; * 1 distorted O_h; * 2 severly distorted O_h; * 3 O_h; * 4 square pyramidal; #1 monodentate; #2 chelating; #3 bismonodentate. * References are included in main text.

Bond lengths (Å)								
N(1)-Zn(01)	2.165(4)	C(17)-O(3)	1.252(5)					
N(2)-Zn(01)	2.167(4)	C(17)-O(4)#1	1.255(5)					
O(2)-Zn(01)	1.962(4)	C(22)-N(1)	1.333(5)					
O(4)-Zn(01)	2.042(4)	C(31)-N(2)	1.329(5)					
C(10)-O(1)	1.221(5)	C(33)-N(2)	1.360(5)					
C(10)-O(2)	1.294(5)	C(34)-N(1)	1.353(5)					
Bond angles (°)								
C(22)-N(1)-Zn(01)	126.9(3)	O(2)-Zn(01)-O(3)	117.13(17)					
C(34)-N(1)-Zn(01)	115.0(3)	O(2)-Zn(01)-O(4)	91.86(19)					
C(31)-N(2)-C(33)	118.5(3)	O(3)-Zn(01)-O(4)	96.24(15)					
C(31)-N(2)-Zn(01)	126.9(3)	O(2)-Zn(01)-N(1)	103.02(17)					
C(33)-N(2)-Zn(01)	114.4(3)	O(3)-Zn(01)-N(1)	88.51(18)					
C(10)-O(2)-Zn(01)	117.0(3)	O(4)-Zn(01)-N(1)	160.28(11)					
C(17)-O(3)-Zn(01)	146.3(3)	O(2)-Zn(01)-N(2)	102.20(16)					
Hydrogen bonds								
D−H…A (Å)	D-H (Å)	$H \cdots A(Å)$	$D \cdots A(A)$					
O5−H5A…O2ª	0.76(3)	1.96(3)	2.688(2)					
O5−H5B…O3 ^b	0.82(2)	2.02(2)	2.822(2)					

Table S5. Selected structural parameters observed in $[Zn_2(L^1)_4(AL^1)_2](CH_3OH)$ (3).

Compound	Geom.	Zn-O	Zn–N	Zn-O	<n–zn–n< th=""><th>Nature of COO-</th><th>Str. type</th><th>Ref.*</th></n–zn–n<>	Nature of COO-	Str. type	Ref.*
	around Zn	(COO [_])(Á́)	(hc)*(Å)	(aqua) (Å)	(°)			
$[Zn_2(L^1)_4(AL^1)_2](CH_3OH)$	square	1.962(4)	2.165(4)	-	76.34(19)	Mono & bidentate	Dimeric	This work
(3)	pyramidal	2.042(4)	2.167(4)					
$[Zn(L^3)_2(AL^1)(H_2O)]$ (7)	dist. O _h	-	_	_	-	mono-dentate	3-D	this work
$[Zn(phen)_2(H_2O)_2]L \cdot 4H_2O^a$	O _h	-	2.152(2), 2.232(2)	2.074(1)	76.09(6)	_	3-D	19a
				2.049(1)				
[Zn(phen) ₂ (MeCO ₂)]ClO ₄	dist. O _h	2.296(5)	2.143(6), 2.135(6),	-	78.1(2),	bi-dentate	_	19b
		2.156(5)	2.100(5), 2.160(5)		78.6(2)			

Table S6. Comparison of zinc-phenanthroline complexes with –O and –N coordination with 3 and 7.

*hc: heterocyclic; ^a L^{2–}= fumarate * References are included in main text.

Bond lengths (Å)							
Mn(1)–O(1)	2.099(1)	O(1)–C(1)	1.263(2)				
Mn(1)–O(3)	2.189(1)	O(2)–C(1)	1.243(2)				
Mn(1)–O(5)	2.220(1)	O(3)–C(11)	1.269(2)				
Mn(1)–N(2)	2.244(1)	O(4)-C(11)#1	1.250(2)				
Mn(1)–N(1)	2.247(1)	O(5)-H(5A)	0.76(3)				
Mn(1)–O(4)	2.251(1)	O(5)-H(5B)	0.82(3)				
	Во	ond angles (°)					
O(1)-Mn(1)-O(3)	93.41(5)	O(3)-Mn(1)-O(4)	171.30(4)				
O(1)-Mn(1)-O(5)	95.98(5)	O(5)-Mn(1)-O(4)	3.24(5)				
O(3)-Mn(1)-O(5)	88.23(5)	N(2)-Mn(1)-O(4)	5.37(4)				
O(1)-Mn(1)-N(2)	89.12(5)	N(1)-Mn(1)-O(4)	81.95(5)				
O(3)-Mn(1)-N(2)	102.96(5)	C(1)-O(1)-Mn(1)	126.2(1)				
O(5)-Mn(1)-N(2)	167.44(5)	C(11)–O(3)–Mn(1)	136.3(1)				
O(1)-Mn(1)-N(1)	161.83(5)	C(11)#1–O(4)–Mn(1)	131.5(1)				
O(3)-Mn(1)-N(1)	97.71(5)	Mn(1)-O(5)-H(5A)	97(2)				
O(5)-Mn(1)-N(1)	98.67(5)	Mn(1)–O(5)–H(5B)	98(2)				

Table S7. Selected structural parameters observed in $[Mn(L^3)_2(AL^1)(H_2O)]$ (4).

Symmetry equivalents: #1 y, -x+1/2, z+1/4; #2 -y+1/2, x, z-1/4 (a) x,y,z (b) y, x+1/2, +z+1/4

Bond lengths (Å)								
Cu(1)–O(1)	1.947(5)	O(1)–C(1)	1.261(9)					
Cu(1)–O(5)	2.005(5)	O(2)–C(1)	1.238(9)					
Cu(1)–N(1)	2.015(5)	O(3)–C(11)	1.249(8)					
Cu(1)–N(2)	2.027(5)	O(4)–C(11)	1.272(8)					
Cu(1)–O(3)	2.405(5)							
Bond angles (°)								
O(1)-Cu(1)-O(5)	96.0(2)	N(2)–Cu(1)–O(3)	86.9(2)					
O(1)-Cu(1)-N(1)	170.7(2)	C(21)–N(1)–Cu(1)	129.0(5)					
O(5)-Cu(1)-N(1)	92.2(2)	C(25)–N(1)–Cu(1)	112.4(5)					
O(1)-Cu(1)-N(2)	89.8(2)	C(32)–N(2)–Cu(1)	128.6(5)					
O(5)-Cu(1)-N(2)	170.9(3)	C(29)–N(2)–Cu(1)	112.6(5)					
N(1)-Cu(1)-N(2)	81.5(2)	C(1)–O(1)–Cu(1)	128.4(5)					
O(1)-Cu(1)-O(3)	88.9(2)	C(11)–O(3)–Cu(1)	123.5(4)					
O(5)–Cu(1)–O(3)	86.2(2)	Cu(1)–O(5)–H(5A)	101(4)					
N(1)-Cu(1)-O(3)	87.3(2)	Cu(1)–O(5)–H(5B)	105(4)					

Table S8. Selected structural parameters observed in $[Cu(L^3)_2(AL^1)(H_2O)]$ (6).

Fig. S7 Molecular structure of **5**(a) and helical structure of $[Co(tmba)_2(1,10-phen)(H_2O)]$ (**5**, b) $[Cu(tmba)_2(1,10-phen)(H_2O)]$ (**6**, c) and $[Zn(tmba)_2(1,10-phen)(H_2O)]$ (**7**, d).

(a)

Fig. S8 ¹H NMR spectra of 8 (top) and 10 (middle) with free 4,4'-bpy (bottom) ligand in DMSO- d_6 .

Table S9. Selected	bond length and angles	of $[Zn(L^2)_2(AL^2)]$ (8).
--------------------	------------------------	-----------------------------

Bond lengths (Å)							
Zn(1)–N(1)	2.130(2)		O(1)–C(1)	1.265(4)			
Zn(1)–O(2)	2.136(2)		O(2)–C(1)	1.260(4)			
Zn(1)–O(1)	2.162(2)		N(1)–C(21)	1.325(3)			
		Bond ar	ngles (°)				
N(1)#1-Zn(1)-N(1)		180.0	O(1)#1–Zn(1)–O(1)	180.0			
N(1)-Zn(1)-O(2)#1		90.0	C(1)–O(1)–Zn(1)	88.1(2)			
N(1)-Zn(1)-O(2)		90.0	C(1)–O(2)–Zn(1)	89.4(2)			
O(2)#1-Zn(1)-O(2)		180.0	C(21)#2-N(1)-C(21)	116.7(3)			
N(1)-Zn(1)-O(1)#1		90.0	C(21)#2-N(1)-Zn(1)	121.7(1)			
N(1)#1-Zn(1) -O(1)		90.0	C(21)-N(1)-Zn(1)	121.7(1)			
N(1)-Zn(1)-O(1)		90.0	O(2)–C(1)–O(1)	121.0(3)			
O(2)#1-Zn(1) -O(1)		118.50(9)	O(2)–C(1)–C(2)	119.8(3)			
O(2)–Zn(1)–O(1)		61.50(9)	O(1)-C(1)-C(2)	119.3(3)			

Symmetry equivalents: #1 -x,-y,-z; #2 -x,y,-z; #3 x,-y,z; #4 -x,-y-1,-z

Fig. S9. ¹H NMR spectrum of 8 in DMSO- d_6 .

Fig. S10. ¹³C NMR spectrum of 8 in DMSO- d_6 .

Fig. S11. ¹H NMR spectrum of **10** in DMSO- d_6 .

Fig. S12. ¹³C NMR spectrum of 10 in DMSO- d_6 .

Compound	Geometry	Zn-O	Zn-N	<n-zn-n< th=""><th>nature of COO-</th><th>Type of structure</th><th>Ref.*</th></n-zn-n<>	nature of COO-	Type of structure	Ref.*
	around Zn	(COO ⁻)	(hc)	(°)			
		(Å)	(Å)				
$[Zn(L^2)_2(AL^2)]$ (8)	Oh	2.136	2.130	190	bidentate	1-D linear	this work
		2.162				polymer	
$[Zn(L^3)(OAc)(AL^2)]$ (10)	Oh	2.450	2.195	190	bidentate	Rail-road like	this work
		2.080	2.190			polymer	
Zn(4,4'-bpy)(4,4'-biphenyl dicarboxylate	T _d	1.91(1) 2.01(1)	2.075(9) 2.111(9)	108.4(7)	monodentate	3-D polymer	20a
[Zn(H ₂ O)4 (4,4'-bpy)] (succinate) 4H ₂ O	distorted Oh	2.061 Å 2.185 Å	2.132 Å	-	-	2-D layer	20b
$[Zn_2(4,4'-bpy)(btc)$ $(H_2O)]_n \cdot 2nH_2O^a$	T _d	1.935(2), 1.996(2)	2.0552	_	monodentate	3-D network	20c
$[Zn_4O(ip)_3(4,4'-bpy)]^b$	T _d	1.970(2),	2.076(3)	_	bisbidentate and	2-D grid	20d
		1.989(2), 1.969(3)			bismonodentate		
$[Zn_4(OH)_2(fa)_3(4,4'-bpy)_2]^c$	distorted O _h , T _d	2.367(4),	2.192(4)	-	chelate monodentate	3-D framework	20e
		2.089(4), 2.054(4)			and bisbidentate		
Zn(succinate)(4,4'-bpy)	distorted O _h	2.046(5), 2.295(5)	2.097(6)	_	bidentate chelating	layered structure	20f

 Table S10. Comparison of zinc-4,4'-bpy complexes with -O and -N coordination.

^abtc: 1,2,4,5-benzenetetracarboxylic anhydride; ^bip; isophthalate; ^cfa: fumarate.

* References are included in main text.

Bond lengths (Å)						
Mn(1)-O(2)	2.095(3)	N(1)-Mn(1)#3	2.303(4)			
Mn(1)-O(1)	2.102(3)	O(1)-C(15)#1	1.251(5)			
Mn(1)-O(3)	2.231(3)	C(5)-N(2)	1.334(5)			
Mn(1)-N(2)	2.276(4)	C(6)-N(2)	1.340(5)			
Mn(1)-O(4)	2.298(3)	C(8)-N(1)	1.333(5)			
Mn(1)-N(1)#2	2.303(4)	C(9)-N(1)	1.331(5)			
	Bo	nd angles (°)				
O(2)-Mn(1)-O(1)	123.34(12)	O(1)-Mn(1)-O(4)	148.69(11)			
O(2)-Mn(1)-O(3)	145.47(12)	O(3)-Mn(1)-O(4)	57.92(10)			
O(1)-Mn(1)-O(3)	90.85(11)	N(2)-Mn(1)-O(4)	92.81(12)			
O(2)-Mn(1)-N(2)	87.24(12)	O(2)-Mn(1)-N(1)#2	93.30(13)			
O(1)-Mn(1)-N(2)	88.58(12)	O(1)-Mn(1)-N(1)#2	87.66(13)			
O(3)-Mn(1)-N(2)	89.16(12)	O(3)-Mn(1)-N(1)#2	92.73(13)			
O(2)-Mn(1)-O(4)	87.96(11)	N(2)-Mn(1)-N(1)#2	175.82(12)			

Table S11. Selected structural parameters observed in $[Mn(L^3)(OAc)(AL^2)]$ (9).

Fig. S13. Molecular structure of zinc polymer 10 and octahedral coordination view of zinc atom.

Fig. S14. Rail-road like polymeric view of zinc complex 10 (top) and view of rectangle units are repeated in the polymer with rectangle size (bottom).

Bond lengths (Å)			
Zn(1)-O(4)	2.025(2)	Zn(1)-C(11)	2.596(3)
Zn(1)-O(3)	2.0295(19)	O(1)-C(11)	1.238(3)
Zn(1)-O(2)	2.0805(19)	O(2)-C(11)	1.253(3)
Zn(1)-N(2)	2.190(2)	O(3)-C(21)	1.243(3)
Zn(1)-N(1)	2.195(2)	O(4)-C(21)#1	1.237(3)
Zn(1)-O(1)	2.450(2)	N(1)-C(5)	1.327(3)
Bond angles (°)			
O(4)-Zn(1)-O(3)	122.48(10)	O(3)-Zn(1)-N(1)	90.67(8)
O(4)-Zn(1)-O(2)	142.13(9)	O(2)-Zn(1)-N(1)	91.39(8)
O(3)-Zn(1)-O(2)	95.18(8)	N(2)-Zn(1)-N(1)	177.70(8)
O(4)-Zn(1)-N(2)	86.73(8)	O(4)-Zn(1)-O(1)	85.73(9)
O(3)-Zn(1)-N(2)	88.46(8)	O(3)-Zn(1)-O(1)	151.79(8)
O(2)-Zn(1)-N(2)	90.81(8)	O(2)-Zn(1)-O(1)	56.65(7)
O(4)-Zn(1)-N(1)	91.94(8)	N(2)-Zn(1)-O(1)	93.16(8)

Table S12. Selected structural parameters observed in $[Zn(L^3)(OAc)(AL^2)]$ (9).

Fig. S15. ¹H NMR spectrum of 11 in DMSO- d_6 .

Fig. S16. PXRD pattern of 2.

Fig. S17. PXRD pattern of 8.

Fig. S18. PXRD pattern of 10.

Fig. S19. PXRD pattern of 11.