Supplementary information

Tuning of net architectures of Ni(II) and Zn(II) coordination polymers using isomeric

organic linkers

Shuang-De Liu, Bing-Chiuan Kuo, Yen-Wen Liu, Jing-Yi Lee, Kwun Yip Wong and Hon Man Lee*

Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, R.O.C.

Figure S1. Comparison of the experimental PXRD patterns for as-asynthesized **1** (upper trace) and the simulated pattern from single-crystal X-ray diffraction data (lower trace).

Figure S2. Comparison of the experimental PXRD patterns for as-asynthesized **2** (upper trace) and the simulated pattern from single-crystal X-ray diffraction data (lower trace).

Figure S3. Comparison of the experimental PXRD patterns for as-asynthesized **3** (upper trace) and the simulated pattern from single-crystal X-ray diffraction data (lower trace).

Figure S4. Comparison of the experimental PXRD patterns for as-asynthesized **4** (upper trace) and the simulated pattern from single-crystal X-ray diffraction data (lower trace).

Figure S5. Comparison of the experimental PXRD patterns for as-asynthesized **5** (upper trace) and the simulated pattern from single-crystal X-ray diffraction data (lower trace).

Figure S6. Coordination environment of the Zn atoms in 6 with thermal ellipsoids shown at 50 % probability. The hydrogen atoms, except that on O5, are omitted for clarity. Symmetry code: #1 = -x + 1, -y, -z + 2

Figure S7. Schematic view of the 1D chain in 6.

Figure S9. Fluorescence spectra of L1 and L2 (6 x 10⁻⁵ M in DCM; L1: $\lambda_{ex} = 308$ nm, $\lambda_{max} = 401$ nm. L2:

 $\lambda_{\text{ex}} = 318 \text{ nm}, \ \lambda_{\text{max}} = 391 \text{ nm})$

Figure S10. Irradiation of 1–5 (from left to right) under UV light (325 nm)

Figure S11. Absorption spectrum of L1 and L2 (6 x 10⁻⁵ M in DCM)

Figure S12. Excitation spectrum of L1 and L2 (6 x 10⁻⁵ M in DCM)

Figure S13. Solid-state Absorption spectrum of Zn 3–5 S7

Figure S14. Solid-state excitation spectrum of Zn 3–5

	1	2	3	4	5	6
empirical formula	C ₂₀ H ₁₇ N ₃ NiO ₆	C40H28N6Ni2O9	C ₂₄ H ₁₆ N ₃ O ₇ Zn ₂	$C_{21}H_{13}N_3O_7Zn_2\cdot$	$C_{22}H_{15}N_3O_9Zn_2$	$C_{21}H_{15}N_3O_7Zn$
				0.5H ₂ O		·H ₂ O
formula weight	454.08	854.10	589.14	558.09	596.11	504.75
crystal system	orthorhombic	orthorhombic	triclinic	monoclinic	monoclinic	triclinic
space group	Fdd2	Fdd2	$P\overline{1}$	C2/c	$P2_{1}/c$	Pī
<i>a</i> , Å	17.297(2)	11.723(2)	10.4229(5)	20.233(4)	7.5106(2)	7.2889(4)
<i>b</i> , Å	30.446(4)	22.957(6)	10.5611(6)	10.901(2)	31.1959(7)	9.7098(5)
<i>c</i> , Å	14.7303(19)	31.011(11)	12.2119(6)	20.355(4)	10.5537(3)	13.6547(7)
α , deg	90	90	114.782(3)	90	90	95.558(1)
β , deg	90	90	109.889(4)	115.467(10)	118.658	90.979(1)
γ, deg	90	90	96.087(3)	90	90	93.688(1)
<i>V</i> , Å ³	7757.3(17)	8346(4)	1097.91(10)	4053.3(13)	2169.82(10)	959.59(9)
<i>Т</i> , К	150(2)	150(2)	150(2)	150(2)	150(2)	150(2)
Ζ	16	8	2	8	4	2
no. of unique data	5007	4545	4795	4202	4716	3957
no. of params refined	281	263	326	315	325	298
$R_1^a \left[I > 2 \sigma I \right]$	0.0684	0.0432	0.0537	0.0842	0.0774	0.0788
wR_2^b (all data)	0.1824	0.1076	0.1533	0.2432	0.2229	0.2498

Table S1. Crystallographic data

 ${}^{a}R_{1} = \mathcal{L}(||F_{o}| - |F_{c}||)/\mathcal{L}|F_{o}|. {}^{b} wR_{2} = [\mathcal{L}(|F_{o}|^{2} - |F_{c}|^{2})^{2}/\mathcal{L}(F_{o}^{2})]^{1/2}$

Table S2. Classical hydrogen bonds linking the 2D layers into a 3D net in 1 [Å and $^{\circ}$]

D–H···A	d(D–H)	d(H···A)	$d(D \cdots A)$	<(DHA)
O3–H3B…O5#1	0.84	1.96	2.789(6)	167
O4−H4A…O2#2	0.82	2.00	2.805(4)	167

Symmetry transformations used to generate equivalent atoms: #1: 1/4 + x, 1/4 - y, -3/4 + z; #2: 1/4 + x, 1/4 - y, 1/4 + z

 Table S3. Important Bond Distances (Å) and Angles (°) of 6.

Zn1–N2	2.019(5)
Zn1–O1w	2.125(4)
Zn1–O2	1.950(4)
Zn1–O7	1.950(4)
Zn1-O2#1	2.433(4)
O1w–Zn1–O2	97.11(16)
O1w–Zn1–O7	95.57(16)
O2–Zn1–O7	128.96(17)
O1w-Zn1-N2	93.94(17)
O2–Zn1–N2	119.22(18)
O7–Zn1–N2	108.89(18)
O7–Zn1–O2#1	85.57(15)
O2–Zn1–O2#1	79.71(15)
N2-Zn1-O2#1	88.72(16)
O1w-Zn1-O2#1	176.59(14)

Symmetry code: #1 = -x + 1, -y, -z + 2