Supporting Information for:

Crystal structure analyses facilitate understanding of synthetic protocols in the preparation of 6,6’-dibromo substituted BINOL compounds

Marco Agnes, a,b Alessandro Sorrenti, a Dario Pasini, b Klaus Wurst, c and David B. Amabilino a

a Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola del Vallès, Catalonia - Spain, Fax: (+34) 93-5805729

b Department of Chemistry and INSTM Research Unit, University of Pavia, Viale Taramelli, 10 - 27100 - Pavia - Italy.

c Institut für Anorganische Chemie, Innrain 80/82, A-6020 Innsbruck, Austria
Figure S1. 1H-NMR spectra of (RS)-2 before (a) and after crystallization from toluene/cyclohexane (b).
Figure S2. IR spectra of (R)-2 before (top) and after crystallization from toluene/n-hexane (bottom).
Figure S3 Optical microscope images of compound (R)-2 crystallized from CH$_2$Cl$_2$/cyclohexane and purified.

Figure S4 Optical microscope images of compound (R)-2 crystallized from toluene/n-hexane and purified.

Figure S5 Optical microscope images of compound (RS)-2 crystallized from toluene/cyclohexane and purified.
Figure S6: Optical microscope images of compound (RS)-3 crystallized from CHCl₃/EtOH and still with regioisomerically impurities.

Figure S7: Optical microscope images of compound (R)-3 crystallized from CHCl₃/EtOH and purified.

Figure S8: Optical microscope images of compound (RS)-4 crystallized from CH₂Cl₂/EtOH and regioisomerically impure.
Figure S9 Solution state circular dichroism spectra of the \(R \) enantiomers of compounds \(2 \) (in EtOH), \(3 \) and \(4 \) (both in MeCN).
Copies of NMR spectra of compound (RS)-4

1H NMR

![NMR spectra image]
13C NMR

13C NMR (DEPT)
Hydrogen bonds for \((R)-2\) and \((RS)-2\)

Table S1. Hydrogen bonds for \((R)-2\) \([\text{Å and }^\circ]\) in \(P2_12_12_1\).

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th>(<(DHA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-H(1O)...O(2)#1</td>
<td>0.831(19)</td>
<td>2.13(2)</td>
<td>2.934(4)</td>
<td>164(5)</td>
</tr>
<tr>
<td>O(2)-H(2O)...Br(1)#2</td>
<td>0.823(19)</td>
<td>2.74(4)</td>
<td>3.353(3)</td>
<td>133(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+2,y+1/2,-z+1/2 #2 x+1/2,-y+3/2,-z

Table S2. Hydrogen bonds for \((RS)-2\) \([\text{Å and }^\circ]\) in \(P2_1/n\).

<table>
<thead>
<tr>
<th>D-H...A</th>
<th>d(D-H)</th>
<th>d(H...A)</th>
<th>d(D...A)</th>
<th>(<(DHA))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-H(1O)...O(2)#1</td>
<td>0.820(19)</td>
<td>2.14(3)</td>
<td>2.840(3)</td>
<td>143(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
#1 -x+1/2,y+1/2,-z+1/2