Mesoporous CeO$_2$ nanoparticles assembled by hollow nanostructures: formation mechanism and enhanced catalytic property

Jingcai Zhanga, Hongxiao Yangb, Shuping Wanga, Wei Liua, Xiufang Liua, Jinxin Guo*a and Yanzhao Yang*a

a Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China. Fax: +86-531-88564464; Tel: +86-531-88362988; E-mail: yzychyang@sdu.edu.cn; E-mail: jinxinguo@sdu.edu.cn.

b School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China

* Corresponding author

Fig. S1 XRD pattern of the product obtained by the calcination of the cerium formate precursor at 400 °C for 2 h.

Fig. S2 high-magnification SEM image of the as-prepared CeO$_2$ nanoparticles
Fig. S3 Representative TEM images of CeO$_2$ nanospheres after calcination method via cerium formate precursor: (a) over morphology of the products; (b) TEM image of a single nanosphere.

Fig. S4 N$_2$ adsorption-desorption isotherms of the CeO$_2$ spherical structures after calcination method; inset is the corresponding BJH pore size distribution curve.

Fig. S5 The TEM images of the products of solvothermal reaction: (a) with slow injection of strong ammonia (10M); (b) with PVP instead of OP-10; (c) without OP-10.
Fig. S6 Catalytic performance of the obtained CeO$_2$ in different runs.

Fig. S7 The TEM image of the nano-cone constructed CeO$_2$ nanoparticles after the catalysis.