Supplementary Information

Rapid combustion route to high-performance nanocrystalline cathode materials for Li-ion batteries

Keyan Li\(^a\), Shudong Lin\(^a\), Fenfen Shua\(^a\), Jiawei Zhang\(^a\), Kunfeng Chen\(^{a,b}\), and Dongfeng Xue\(^{a,b,\ast}\)

\(^a\)School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
\(^b\)State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

\(^\ast\)Corresponding author. E-mail: dongfeng@ciac.ac.cn

Fig. S1 Cycling performances (charged and discharged at 100 mA/g) of LiMn\(_2\)O\(_4\) obtained with different amounts of final products using 10 mL solution in one pot.
Fig. S2 (a) XRD pattern and (b) cycling performance (charged and discharged at 100 mA/g) of one step LMO750. The standard pattern of LiMn$_2$O$_4$ (JCPDS 18-736) is shown for reference.
Fig. S3 (a) FESEM and (b) EDS images of LiCo$_{0.95}$Mn$_{0.05}$O$_2$, (c) rate capabilities of LiCoO$_2$ and LiCo$_{0.95}$Mn$_{0.05}$O$_2$.