Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

$\label{eq:supporting} Supporting information section \\ Oriented attachment of ultra-small Mn_{(1-x)}Zn_xFe_2O_4 \ nanoparticles \ during the \\ non-aqueous \ sol-gel \ synthesis \\ \end{array}$

CrystEngComm

I.-C. Masthoff and G. Garnweitner Institute for Particle Technology Technische Universität Braunschweig Volkmaroder Str. 5, 38104 Braunschweig g.garnweitner@tu-bs.de

A. Gutsche, H. Nirschl Institute for Mechanical Process Engineering and Mechanics Karlsruhe Institute of Technology Strasse am Forum 8, 76131 Karlsruhe

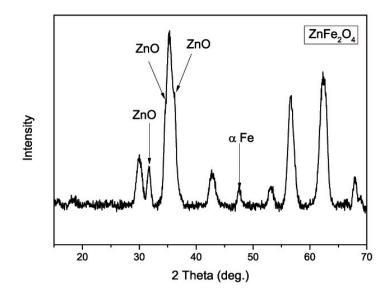


Figure 1: XRD pattern of $ZnFe_2O_4$ particles synthesized with $Zn(acac)_{hyd}$ as precursor.

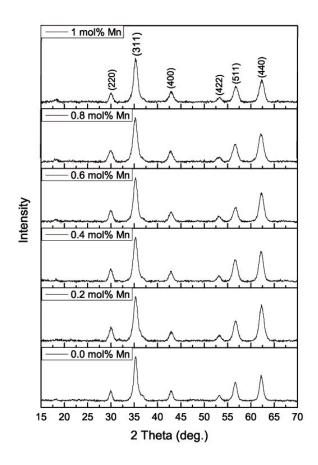


Figure 2: XRD patterns of the samples after calcination at 400° C for 2 h in a nitrogen atmosphere.

Table 1: Crystallite size of the dried particle samples calculated with the Scherrer equation.

sample	crystallite size [nm]
MnFe ₂ O ₄	5.56
$Mn_{0.8}Zn_{0.2}Fe_2O_4$	5.31
$Mn_{0.6}Zn_{0.4}Fe_2O_4$	4.85
$Mn_{0.4}Zn_{0.6}Fe_2O_4$	5.87
$Mn_{0.2}Zn_{0.8}Fe_2O_4$	6.02
ZnFe ₂ O ₄	8.77

sample	size calcinated [nm]
MnFe ₂ O ₄	8.59
$Mn_{0.8}Zn_{0.2}Fe_2O_4$	8.33
$Mn_{0.6}Zn_{0.4}Fe_2O_4$	8.96
$Mn_{0.4}Zn_{0.6}Fe_2O_4$	8.87
$Mn_{0.2}Zn_{0.8}Fe_2O_4$	8.41
ZnFe ₂ O ₄	11.11

Table 2: Crystallite size of the samples after calcination at 400° C for 2 h in a nitrogen atmosphere calculated with the Scherrer equation.

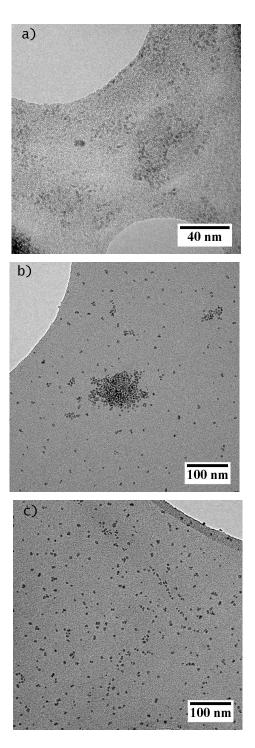


Figure 3: TEM images of the samples with $t_R = 2 h$ (a), $t_R = 8 h$ (b) and (c) $t_R = 14 h$.

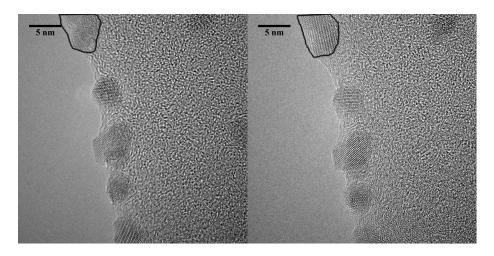


Figure 4: In situ TEM observation of oriented attachment of $Mn_{0.6}Zn_{0.4}Fe_2O_4$ nanoparticles. The images were taken at an interval of 5 minutes.

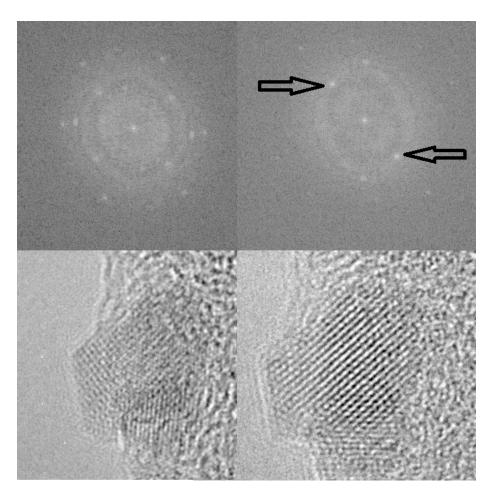


Figure 5: FFT images of the $Mn_{0.6}Zn_{0.4}Fe_2O_4$ nanoparticles during the oriented attachment. The crystallographic plane 311 with the d-spacing of 0.25 nm shows an increased resolution after the oriented attachment of the particles. Therefore we inferred that the 311 plane is the preferred orientation direction.

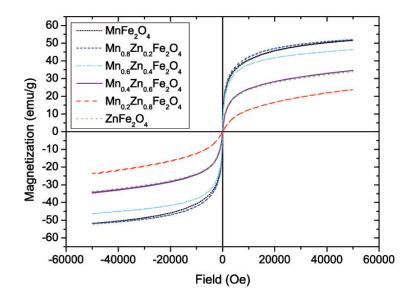


Figure 6: Hysteresis loops of the samples after calcination at 400° C for 2h in a nitrogen atmosphere.