Assembling of SnO\textsubscript{2} Quantum dots on RGO to form SnO\textsubscript{2}/N doped RGO as High-Capacity Anode Material for Lithium Ion Batteries

Yunqing Luo,1* Shanshan Fan,1 Yumin Luo,2 Nongyi Hao,1 Shuangling Zhong1 and Wencong Liu1*

1. College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, P.R China
2. School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

E-mail: qyluo2014@163.com; chemliuwc@163.com
Experimental Section:

Synthesis of GO:

GO was synthesized from natural graphite powder according to a modified Hummers method. Briefly, 0.9 g of graphite powder was added into a mixture of 7.2 mL of 98% H₂SO₄, 1.5 g of K₂S₂O₈, and 1.5 g of P₂O₅. The solution was kept at 80 °C for 4.5 h, followed by thorough washing with water. Thereafter, the as-treated graphite was put into a 250 mL beaker, to which 0.5 g of NaNO₃ and 23 mL of H₂SO₄ (98%) were then added while keeping the beaker in the ice bath. Subsequently, 3 g of KMnO₄ was added slowly. After 5 min, the ice bath was removed and the solution was heated up to and kept at 35 °C under vigorous stirring for 2 h, followed by the slow addition of 46 mL of water. Finally, 40 mL of water and 5mL of H₂O₂ was added, followed by water washing and filtration. The exfoliation of graphene oxide was then dispersed in water (5 mg mL⁻¹) under ultrasonication for 2 h to yield a homogeneous suspension.

Synthesis of SnO₂ quantum dots:

1 mmol SnCl₄ and 1 mmol AHA were dissolved in 10 mL water. After ultrasound treatment for 5 minutes, the products were purified by centrifugation and washed with water and acetone for three times.

Synthesis of SnO₂/GO hybrids:

The as-obtained SnO₂ quantum dots were re-dispersed in 10 mL water, then 4 mL GO solution was dropping in slowing. After stirring for 1 hour, the black precipitation was collected by centrifugation and re-dispersed in 10 mL ethanol. After hydrothermal treatment at 140 °C for 3 hours, SnO₂/RGO hybrid nanomaterial was obtained.

Synthesis of SnO₂/N doped RGO hybrids:

The dried SnO₂/RGO sample was heated in Ar flow at 450 °C for 2 hous at a heating rate of 2 °C/min.

Characterization:

The X-ray diffraction patterns of the products were collected on a Rigaku-D/max 2500 V X-ray diffractometer with Cu-Kα radiation (λ = 1.5418 Å), with an operation voltage and current maintained at 40 kV and 40 mA. Transmission electron microscopic (TEM) images were obtained with a TECNAI G2 high-resolution transmission electron microscope operating at 200 kV. XPS measurement was performed on an ESCALAB-MKII 250 photoelectron spectrometer (VG Co.) with Al Kα X-ray radiation as the X-ray source for excitation.

Electrochemical measurements:

The test cell consisted of a working electrode and a lithium foil which were separated by a Celgard 2400 membrane. The electrolyte solution was prepared by dissolving 1 M LiPF6 in EC-DMC (1 : 1 w/w). The working electrodes were prepared by casting slurry containing 80 % active material, 10 % acetylene black and 10 % polyvinylidene fluoride (PVDF) onto a copper foil. After vacuum drying at 80 °C for about 24 h, the electrode disks were punched and weighed. Each electrode has approximately 1–3 mg of active material. Galvanostatic charge–discharge cycling tests were performed using a LAND CT2001A multi-channel battery testing system in the voltage range between 0.01 and 3 V at room temperature.
Figure S1. TEM images of SnO$_2$ quantum dots after the ultrasound treatment.
Figure S2. TG curves of SnO$_2$ quantum dots and SnO$_2$/N doped RGO.
Figure S3. XRD data of SnO$_2$/N doped RGO.
Figure S4. XPS data of GO and C, N, Sn in SnO\textsubscript{2}/N doped RGO.
Figure S5. discharge-charge curves of SnO$_2$/N doped RGO at the ratio of 100 mA$^{-1}$.
Figure S6. TEM image of GO.