Appendix A: Loop structure of the 4-ext integral transformation

Here, we describe briefly the new integral transformation module, which generates the 4-external integral distribution: Two of the three permutational symmetries of the AO integrals are exploited, thus each unique AO integral is effectively computed twice. The third permutational symmetry within the slower shell pair (MN) is discarded in order to avoid simultaneous storage of all three-quarter transformed integrals on disk. Note that the latter set is considerably larger than the final set of fully transformed 4-external integrals. The third and fourth quarter transformation steps are driven by the sparse atom pair and triple lists, and in each transformation step a fast dense matrix multiply constitutes the computational kernel. The partially transformed integrals of each step are stored in sparse form, i.e., as a sparse list of locally dense integral blocks over shell and atom ranges.

DO M=1,NShell
 DO N=1,NShell
 Reset memory for (MN|Rr) blocks (Q1 memory)
 DO R=1,Max(M,R)
 DO S=1,R (S=1,Min(M,N) if R==Max(M,N))
 Compute integral block (MN|RS)
 Check, if new (MN|Rr) blocks will contribute (prescreening)
 If so, increase Q1 memory pointer
 Q1 step over shell block:
 \[Q1(MN|Rr) = Q1(MN|Rr) + (MN|RS) \times P(S,r) \]
 \[Q1(MN|Sr) = Q1(MN|Sr) + (MN|RS) \times P(R,r) \]
 END DO
 END DO
 DO R=1,NShell
 IF (MN|Rr) exists THEN
 -- s: (r,s) in AtomPairLst, prescreening
 \[Q2(MN|sr) = Q2(MN|sr) + Q1(MN|Rr) \times P(R,s) \]
 END IF
 END DO
END DO

17
Check, if new \((MN|sr)\) blocks will contribute (prescreening)

If so, increase \(Q2\) disk pointer

Write \(Q2(MN|sr)\) to disk in canonical order:
(for each AtomPair corresponding \(Q2\) integral block,
with AOs \(mu,nu\) fixed to shells \(M,N\))

END DO

LOOP over AtomPairLst

DO \(N=1,NShell\)

IF \((MN|sr)\) exists THEN

Read \(Q2(MN|sr)\) from disk

\(-- t: (r,s,t)\) in AtomTriplesLst, prescreening

\(Q3(Mt|sr) = Q3(Mt|sr) + Q2(MN|sr) \times P(N,t)\)

Write \(Q3(Mt|sr)\) to disk

END IF

END DO

END LOOP

IF (overall \(Q3(Mt|sr)\) integrals exceed disk buffer) THEN

LOOP over AtomTriplesLst

LOOP over \(M\) Shell range

IF \((Q3(Mt|sr)\) exists THEN

Read \(Q3(Mt|sr)\) from disk

\(-- u: (r,s,t,u)\) in AtomQuadLst, prescreening

Read \(Q4(ut|sr)\) from disk

\(Q4(ut|sr) = Q4(ut|sr) + Q3(Mt|sr) \times P(M,u)\)

Write \(Q4(ut|sr)\) to disk

END IF

END LOOP

END LOOP

END IF

END DO

Perform \(Q4\) step analogously for remaining \(Q3(Mt|sr)\) integrals
in disk buffer