Electronic Supplementary Information for PCCP
To

“EPR and optical studies of erbium-doped β-PbF₂ single-crystals and nanocrystals in transparent glass-ceramics”

Géraldine Dantelle, Michel Mortier, Daniel Vivien

Laboratoire de Chimie de la Matière Condensée de Paris – ENSCP – UMR 7574 – 11 rue Curie – F- 75231 PARIS Cedex 05 – France.

Figure caption

Figure S1: Absorption spectrum of PbF₂:2%ErF₃ at 10K.

Figure S2: Absorption spectra corresponding to the transition \(^{4}I_{15/2} \rightarrow ^{4}G_{11/2}\) for the different single-crystals. The absorption spectra of PbF₂:0.2%Er and PbF₂:0.02%Er have been multiplied by respectively 10 and 100.

Figure S3: Emission spectra of PbF₂:0.2%Er under different excitation wavelengths using some particular lines of the Ar\(^+\) ion laser: (a) \(\lambda_{\text{exc}}= 476 \text{ nm}\), (b) \(\lambda_{\text{exc}}= 488 \text{ nm}\), (c) \(\lambda_{\text{exc}}= 514 \text{ nm}\). \(T=15\text{K}\).
Figure S1: Absorption spectrum of PbF$_2$:2%ErF$_3$ at 10K.

Figure S2: Absorption spectra corresponding to the transition 4I$_{15/2}
ightarrow ^4G_{11/2}$ for the different single-crystals. The absorption spectra of PbF$_2$:0.2%Er and PbF$_2$:0.02%Er have been multiplied by respectively 10 and 100.
Figure S3: Emission spectra of PbF$_2$:0.2%Er under different excitation wavelengths using some particular lines of the Ar$^+$ ion laser: (a) $\lambda_{\text{exc}} = 476$ nm, (b) $\lambda_{\text{exc}} = 488$ nm, (c) $\lambda_{\text{exc}} = 514$ nm. $T=15$K.