Searching of potential energy curves for the benzene dimer using dispersion corrected density functional theory

Prakash Chandra Jha,*a Zilvinas Rinkevicius,*a Hans Ågren,a Prasenjit Sealb and Swapan Chakrabartiab

a Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
Fax: +46 8 5537 8590
E-mail: prakash@theochem.kth.se

b Department of Chemistry, University of Calcutta
92 -A. P. C. Ray Road, Kolkata 700009, India
Fax: 91-33-23519755
E-mail: swapanchem@yahoo.co.in
Fig. S1 Comparison in the potential energy curves (PEC) for parallel-displaced benzene dimer between the present theoretical results with that of counterpoise-corrected estimated CCSD(T) results of Sinnokrot et al. [M. O. Sinnokrot and C. D. Sherrill, *J. Phys. Chem. A*, 2004, 108, 10200] Here r_1 represents the vertical displacement while r_2 represents the horizontal displacement of benzene dimer.

Fig. S2 Comparison in the potential energy curves (PEC) for parallel-displaced benzene dimer between the present theoretical results with that of counterpoise-corrected MP2 results of Sinnokrot et al. [M. O. Sinnokrot and C. D. Sherrill, *J. Phys. Chem. A*, 2004, 108, 10200] Here r_1 represents the vertical displacement while r_2 represents the horizontal displacement of benzene dimer.
Supplementary information (ESI) for Physical Chemistry Chemical Physics

Interaction energy (kcal/mol)

$r_1 = 3.2 \text{ Å}$
$r_1 = 3.4 \text{ Å}$
$r_1 = 3.6 \text{ Å}$
$r_1 = 3.8 \text{ Å}$

$r_2^{PD} (\text{Å})$