Supplemental data

Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis

Jose Antonio Lopez-Sancheza, Nikolaos Dimitratosa, Peter Miedziaka, Edwin Ntainjuaa, Jennifer K. Edwardsa, David Morgana, Albert F. Carleya, Ramchandra Tiruvalamb, Christopher J. Kielyb, Graham J. Hutchingsa*

a School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
b Center for Advanced Materials and Nanotechnology, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195, USA.
Supplementary Figure S1

Bright field micrograph of the sol-immobilized AuPd/C sample after use as a catalyst. There is no significant change in the Au-Pd particle size distribution from the corresponding unused sample.
Supplementary Figure S2

Bright field micrograph and corresponding histogram of the particle size distribution of the AuPd/C sol-immobilized sample after calcination at 400°C. Considerable sintering and growth of the Au-Pd nanoparticles has occurred presumably because of disruption of the protective ligand shell at elevated temperatures.