Supporting Information

Correlation between the Band Positions of \((\text{SrTiO}_3)_{1-x} \cdot (\text{LaTiO}_2\text{N})_x\) Solid Solutions and Photocatalytic Properties under Visible Light Irradiation

Wenjun Luo\(^{1,2}\), Zhaosheng Li\(^{1,2,3*}\), Xiaojun Jiang\(^{1,2}\), Tao Yu\(^{1,3}\), Lifei Liu\(^{1}\), Xinyi Chen\(^{1}\), Jinhua Ye\(^{1,4}\), and Zhigang Zou\(^{1,3*}\){

\(1\)Ecomaterials and Renewable Energy Research Center (ERERC), Department of Physics, Nanjing University, Nanjing 210093, P.R.China

\(2\)Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, P. R. China

\(3\)National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China

\(4\)Photocatalytic Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

* Corresponding author, Fax: +86-25-83686632, E-mail: zsli@nju.edu.cn;

E-mail: zgzou@nju.edu.cn
Figure 1S. Structure models for calculations. a, SrTiO₃; b-d, (SrTiO₃)₀.₇₅ · (LaTiO₂N)₀.₂₅.
Figure 2S. SEM morphologies of (a) N-doped SrTiO$_3$, and (SrTiO$_3$)$_{1-x}$ · (LaTiO$_2$N)$_x$ (b, x=0.05; c, x=0.10; d, x=0.15; e, x=0.20; f, x=0.25; g, x=0.30)
Figure 3S. A typical plot of the evolution rate of oxygen vs. the reoxidation temperature in the sample of $x=0.15$
Figure 4S. X-Ray diffraction patterns of the ceramic electrodes, (a) N-doped SrTiO$_3$, (b) x=0.05, (c) x=0.10
Table 1S. BET surface area of the (SrTiO$_3$)$_{1-x}$ · (LaTiO$_2$N)$_x$ solid solution

<table>
<thead>
<tr>
<th>Sample</th>
<th>x=0</th>
<th>x=0.05</th>
<th>x=0.1</th>
<th>x=0.15</th>
<th>x=0.20</th>
<th>x=0.25</th>
<th>x=0.30</th>
</tr>
</thead>
</table>