Supporting information for manuscript:

Optimising an artificial neural network for predicting the melting point of ionic liquids

Table I. Experimental melting point values for the imidazolium salts studied.\(^{25,36}\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cation (R_1R_2R_3)</th>
<th>Anion, (Y^-)</th>
<th>Experimental melting point /K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me Me Me</td>
<td>MeOSO(_3)</td>
<td>389</td>
</tr>
<tr>
<td>2</td>
<td>Me Me Me</td>
<td>NTf(_2)(^a)</td>
<td>330</td>
</tr>
<tr>
<td>3</td>
<td>Me Me Et</td>
<td>Br</td>
<td>414</td>
</tr>
<tr>
<td>4</td>
<td>Me Me Et</td>
<td>Cl</td>
<td>454</td>
</tr>
<tr>
<td>5</td>
<td>Me Me Et</td>
<td>EtOSO(_3)</td>
<td>340</td>
</tr>
<tr>
<td>6</td>
<td>Me Me Et</td>
<td>MeOSO(_3)</td>
<td>346</td>
</tr>
<tr>
<td>7</td>
<td>Me Me Et</td>
<td>NTf(_2)(^a)</td>
<td>298</td>
</tr>
<tr>
<td>8</td>
<td>Me Me Et</td>
<td>PF(_6)</td>
<td>469</td>
</tr>
<tr>
<td>9</td>
<td>Me Me Et</td>
<td>N(SO(_2)CF(_2)CF(_3)(_2))</td>
<td>298</td>
</tr>
<tr>
<td>10</td>
<td>Me Me (^a)Pr</td>
<td>Cl</td>
<td>411</td>
</tr>
<tr>
<td>11</td>
<td>Me Me (^a)Pr</td>
<td>NTf(_2)(^a)</td>
<td>284</td>
</tr>
<tr>
<td>12</td>
<td>Me Me (^a)Pr</td>
<td>PF(_6)</td>
<td>351</td>
</tr>
<tr>
<td>13</td>
<td>Me Me (^a)Pr</td>
<td>N(SO(_2)CF(_2)CF(_3)(_2))</td>
<td>307</td>
</tr>
<tr>
<td>14</td>
<td>Me Me (^a)Bu</td>
<td>BF(_4)</td>
<td>310</td>
</tr>
<tr>
<td>15</td>
<td>Me Me (^a)Bu</td>
<td>Cl</td>
<td>362</td>
</tr>
<tr>
<td>16</td>
<td>Me Me Pentyl</td>
<td>OTf(^b)</td>
<td>312</td>
</tr>
<tr>
<td>17</td>
<td>Me Me Hexyl</td>
<td>NTf(_2)(^a)</td>
<td>268</td>
</tr>
<tr>
<td>18</td>
<td>Me H Me</td>
<td>Br</td>
<td>449</td>
</tr>
<tr>
<td>19</td>
<td>Me H Me</td>
<td>BF(_3)CF(_3)</td>
<td>288</td>
</tr>
<tr>
<td>20</td>
<td>Me H Me</td>
<td>CF(_3)CO(_2)</td>
<td>392</td>
</tr>
<tr>
<td>21</td>
<td>Me H Me</td>
<td>Cl</td>
<td>399</td>
</tr>
<tr>
<td>22</td>
<td>Me H Me</td>
<td>ClO(_4)</td>
<td>337</td>
</tr>
<tr>
<td>23</td>
<td>Me H Me</td>
<td>MeOSO(_3)</td>
<td>316</td>
</tr>
<tr>
<td>24</td>
<td>Me H Me</td>
<td>NO(_3)</td>
<td>357</td>
</tr>
<tr>
<td>25</td>
<td>Me H Me</td>
<td>NTf(_2)(^a)</td>
<td>295</td>
</tr>
<tr>
<td>26</td>
<td>Me H Me</td>
<td>CF(_3)CF(_2)OSO(_3)</td>
<td>288</td>
</tr>
<tr>
<td>27</td>
<td>Me H Et</td>
<td>AlCl(_4)</td>
<td>282</td>
</tr>
<tr>
<td>28</td>
<td>Me H Et</td>
<td>BF(_3)CF(_3)</td>
<td>254</td>
</tr>
<tr>
<td>29</td>
<td>Me H Et</td>
<td>BF(_3)CF(_2)CF(_3)</td>
<td>272</td>
</tr>
<tr>
<td>30</td>
<td>Me H Et</td>
<td>BF(_3)CF(_3)CF(_4)</td>
<td>281</td>
</tr>
<tr>
<td>31</td>
<td>Me H Et</td>
<td>BF(_3)CF(_2)CF(_3)</td>
<td>253</td>
</tr>
<tr>
<td>32</td>
<td>Me H Et</td>
<td>BF(_4)</td>
<td>286</td>
</tr>
</tbody>
</table>
Table I (cont’d). Experimental melting point values for the imidazolium salts studied

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cation</th>
<th>Anion, Y⁻</th>
<th>Experimental melting point /K</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>34</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>35</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>36</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>37</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>38</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>39</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>40</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>41</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>42</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>43</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>44</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>45</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>46</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>47</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>48</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>49</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>50</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>51</td>
<td>Me</td>
<td>H</td>
<td>Et</td>
</tr>
<tr>
<td>52</td>
<td>Me</td>
<td>H</td>
<td>Allyl</td>
</tr>
<tr>
<td>53</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>54</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>55</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>56</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>57</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>58</td>
<td>Me</td>
<td>H</td>
<td>ⁿPr</td>
</tr>
<tr>
<td>59</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
<tr>
<td>60</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
<tr>
<td>61</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
<tr>
<td>62</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
<tr>
<td>63</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
<tr>
<td>64</td>
<td>Me</td>
<td>H</td>
<td>ⁿBu</td>
</tr>
</tbody>
</table>
Table I (cont’d). Experimental melting point values for the imidazolium salts studied

<table>
<thead>
<tr>
<th>Entry</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>Anion, Y^-</th>
<th>Experimental melting point /K</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>MeOSO_3</td>
<td>298</td>
</tr>
<tr>
<td>66</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>N(CN)_2</td>
<td>267</td>
</tr>
<tr>
<td>67</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>NO_3</td>
<td>303</td>
</tr>
<tr>
<td>68</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>NTf_2^a</td>
<td>271</td>
</tr>
<tr>
<td>69</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>OctylOSO_3</td>
<td>306</td>
</tr>
<tr>
<td>70</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>OTf^b</td>
<td>286</td>
</tr>
<tr>
<td>71</td>
<td>Me</td>
<td>H</td>
<td>"Bu</td>
<td>PF_6</td>
<td>283</td>
</tr>
<tr>
<td>72</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>OTf^b</td>
<td>312</td>
</tr>
<tr>
<td>73</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>BF_4</td>
<td>191</td>
</tr>
<tr>
<td>74</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>Br</td>
<td>221</td>
</tr>
<tr>
<td>75</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>Cl</td>
<td>188</td>
</tr>
<tr>
<td>76</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>NO_3</td>
<td>196</td>
</tr>
<tr>
<td>77</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>NTf_2^a</td>
<td>266</td>
</tr>
<tr>
<td>78</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>OTf^b</td>
<td>294</td>
</tr>
<tr>
<td>79</td>
<td>Me</td>
<td>H</td>
<td>Hexyl</td>
<td>PF_6</td>
<td>199</td>
</tr>
<tr>
<td>80</td>
<td>Me</td>
<td>H</td>
<td>Benzyl</td>
<td>BF_4</td>
<td>350</td>
</tr>
<tr>
<td>81</td>
<td>Me</td>
<td>H</td>
<td>Benzyl</td>
<td>Cl</td>
<td>343</td>
</tr>
<tr>
<td>82</td>
<td>Me</td>
<td>H</td>
<td>Benzyl</td>
<td>PF_6</td>
<td>409</td>
</tr>
<tr>
<td>83</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>BF_4</td>
<td>185</td>
</tr>
<tr>
<td>84</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>Cl</td>
<td>218</td>
</tr>
<tr>
<td>85</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>CTf_3^c</td>
<td>265</td>
</tr>
<tr>
<td>86</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>NO_3</td>
<td>221</td>
</tr>
<tr>
<td>87</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>NTf_2^a</td>
<td>265</td>
</tr>
<tr>
<td>88</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>OTf^b</td>
<td>265</td>
</tr>
<tr>
<td>89</td>
<td>Me</td>
<td>H</td>
<td>Octyl</td>
<td>PF_6</td>
<td>203</td>
</tr>
<tr>
<td>90</td>
<td>Me</td>
<td>H</td>
<td>Nonyl</td>
<td>PF_6</td>
<td>287</td>
</tr>
<tr>
<td>91</td>
<td>Me</td>
<td>H</td>
<td>Decyl</td>
<td>Cl</td>
<td>311</td>
</tr>
<tr>
<td>92</td>
<td>Me</td>
<td>H</td>
<td>Dodecyl</td>
<td>Cl</td>
<td>369</td>
</tr>
<tr>
<td>93</td>
<td>Et</td>
<td>H</td>
<td>Et</td>
<td>MeOSO_3</td>
<td>191</td>
</tr>
<tr>
<td>94</td>
<td>Et</td>
<td>H</td>
<td>Et</td>
<td>NTf_2^a</td>
<td>287</td>
</tr>
<tr>
<td>95</td>
<td>Et</td>
<td>H</td>
<td>Et</td>
<td>PF_6</td>
<td>343</td>
</tr>
<tr>
<td>96</td>
<td>Pentyl</td>
<td>H</td>
<td>Pentyl</td>
<td>NTf_2^a</td>
<td>243</td>
</tr>
<tr>
<td>97</td>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Cl</td>
<td>348</td>
</tr>
</tbody>
</table>

^a Bis{(trifluoromethyl)sulfonyl}amide
^b Trifluoromethanesulfonate
^c Tris(trifluoromethanesulfonyl)methanide
^d Tosylate
^e N-(trifluoromethylsulfonyl)trifluoroacetamide