Supporting information

Fig. S1: Melting temperature (T_m) of 5 wt% C$_{12}$G$_1$ in different hydrocarbon oils.
Fig. S2: Effects of temperature on the reverse micellar structures of C\textsubscript{12}G\textsubscript{1} in cyclic and straight chain hydrocarbon oils as obtained by SAXS; (a) The normalized X-ray scattering intensities, \(I(q) \), of the 5 wt\% C\textsubscript{12}G\textsubscript{1}/cyclohexane system in absolute unit at different temperatures of 50, 60, and 70 °C and (b) the corresponding real-space functions, \(p(r) \), obtained by GIFT procedure. (c) and (d), and (e) and (f), respectively present those for the 5 wt\% C\textsubscript{12}G\textsubscript{1}/octane and the 5 wt\% C\textsubscript{12}G\textsubscript{1}/decane systems at 60 and 70 °C. The solid and broken lines in panel (a), (c), and (e) represent GIFT fit and the calculated form factor for \(n \) particles in unit volume, respectively. Arrows in panels (b), (d), and (f) highlight the maximum diameter, \(D_{\text{max}} \), of the micellar core and the broken line in panel f indicates the cross section diameter of the core.

Fig. S3: Comparison of the micellar structures for different size of hydrophilic headgroup. (a) The SAXS intensities \(I(q) \) of the 5 wt\% C\textsubscript{12}G\textsubscript{1}/octane and 5 wt\% C\textsubscript{12}G\textsubscript{2}/octane systems obtained in absolute unit at 60 °C and (b) the corresponding pair-distance distribution functions, \(p(r) \).