Supplementary Information for

IM-19: a new flexible microporous gallium based-MOF framework with pressure- and temperature-dependent openings

Gérald Chaplais,^{*} Angélique Simon-Masseron, Florence Porcher, Claude Lecomte, Delphine Bazer-Bachi, Nicolas Bats and Joël Patarin

Syntheses

IM-19 ps or Ga(OH)(O₂CC₆H₄CO₂)•0.75 HO₂CC₆H₄CO₂H was hydrothermally prepared from a mixture Ga(NO₃)₃•x H₂O (Strem Chemicals, 99.99 %), 1,4-benzenedicarboxylic acid (H₂BDC, Fluka, 99 %), hydrofluoric acid (Prolabo, 40 %) and distilled water in the 1: 2: 1: 100 molar ratio (by assuming x=0). The mixture was heated at 220°C for 3 days in a Teflon®-lined stainless steel autoclave. The solid was filtered, washed with hot DMF (in order to remove the unreacted molecules of H₂BDC), ethanol and dried at room temperature (yield based on Ga and H₂BDC: 48.4 and 42.4 %, respectively). Elemental analysis (in wt %): C, 44.9 % (44.8 % calc.); H, 2.6 % (2.6 % calc.); Ga, 19.0 % (18.6 % calc.).

The investigation of a HF-free route has been fruitful with molar composition 1: 1: 100 at 160°C for 1 day (yield based on Ga and H₂BDC: 44.5 and 77.9 %, respectively). The recovering of the compound follows the same procedure detailed above. Higher temperatures lead to the formation of the by-product Ga(O)(OH). Elemental analysis (in wt %): C, 44.4 % (44.8 % calc.); H, 2.7 % (2.6 % calc.); Ga, 18.8 % (18.6 % calc.).

IM-19 dmf was produced from IM-19 ps by solvothermal treatment with DMF (weight ratio: 75) in a Teflon®-lined stainless steel autoclave at 160°C for 6 days. The solid was recovered by filtration, washed with DMF and dried at room temperature. The formula determined from TG analysis for IM-19 dmf is: $Ga(OH)(O_2CC_6H_4CO_2) \cdot 0.85$ (CH₃)₂NCOH.

IM-19 h was obtained by thermal treatment in air of IM-19 dmf at 220°C for 1 day. After cooling down to ambient temperature, a white crystalline powder was recovered. Elemental analysis (in wt %): C, 35.2 % (35.7 % calc.); H, 2.7 % (2.6 % calc.); Ga, 25.8 % (25.9 % calc.). The following formula for IM-19 h: Ga(OH)($O_2CC_6H_4CO_2$)·H₂O is in good agreement with the analysis.

Thermal analyses

Thermogravimetric analysis experiments were performed under air until 800°C (rate of 5°C/min) using a Setaram Labsys apparatus.

The thermogram of **IM-19 ps** (Fig. S1) shows two distinct weigh losses assigned to the departure of H_2BDC molecules occluded in the channels (29.6 % exp. vs 33.2 % calc.), and the combustion of organic moieties from the framework (40.4 % exp. vs 41.9 % calc.) causing the collapsing of the structure and leading to the formation of Ga₂O₃, identified by XRD measurement.

Figure S1 Thermogravimetric curve for IM-19 ps.

The thermogram of **IM-19 dmf** (Fig. S2) exhibits two distinct weigh losses corresponding to the departure of DMF molecules occluded in the channels (19.9 % exp. vs 19.9 % calc.), and the combustion of organic moieties from the framework (45.2 % exp. vs 50.2 % calc.). Ga_2O_3 , identified by XRD measurement, is produced at higher temperatures.

Figure S2 Thermogravimetric curve for IM-19 dmf.

The thermogram of **IM-19 h** (Fig. S3) presents two distinct weigh losses corresponding to the removal of water molecules occluded in the channels (6.6 % exp. vs 6.7 % calc.), and the combustion of organic moieties from the framework (55.7 % exp. vs 58.4 % calc.). At higher temperatures, Ga_2O_3 is identified by XRD measurement.

Figure S3 Thermogravimetric curve for IM-19 h.

Crystallographic data

Guest	М	Name	System	Unit-cell parameters				Succession	4/D	(0)	D.C
				a (Å)	b (Å)	c (Å)	β (°)	Space group	a/D	α(°)	кеі.
H ₂ BDC	Ga	IM-19 ps	orthorhombic	17.4370(2)	6.7475(4)	12.1541(4)		Pnma	0.697 ^a	34.9	This work
	Ga	F-free	orthorhombic	17.525(4)	6.7216(16)	11.893(3)		Pnma	0.679 ^{<i>a</i>}	34.2	1
	Ga	F-containing	orthorhombic	17.410(3)	6.7444(10)	12.1646(17)		Pnma	0.699 ^a	35.0	1
	Al	MIL-53(Al) as	orthorhombic	17.129(2)	6.628(1)	12.182(1)		Pnma	0.711 ^a	35.4	2
			orthorhombic	17.019(4)	6.584(2)	12.262(3)		Pnma	0.720^{a}	35.8	1
	Cr	MIL-53(Cr) as	orthorhombic	17.340(1)	6.822(1)	12.178(1)		Pnma	0.702^{a}	35.1	3
	v	MIL-47 as	orthorhombic	17.519(1)	6.8750(4)	12.1680(8)		Pnma	0.695 ^a	34.8	4
	In		monoclinic	18.228(3)	11.970(2)	34.062(6)	122.4(1)	P21/c	0.657^{b}	33.3	5
DMF	Ga	IM-19 dmf	monoclinic	6.7120(4)	11.2486(11)	17.9650(16)	91.975(7)	$I2/a^{g}$	0.627 ^c	32.1	This work
	Fe	MIL-53(Fe),dmf	monoclinic	19.068(2)	11.2869(9)	6.8685(6)	108.925(6)	C2/c	0.626^{d}	32.0	6
H ₂ O	Ga	IM-19 h	monoclinic	19.1866(26)	7.6278(13)	6.6688(7)	95.858(10)	-	0.400^{d}	21.8	This work
	Al	MIL-53(Al) lt	monoclinic	19.513(2)	7.612(1)	6.576(1)	104.24(1)	Сс	0.402^{d}	21.9	2
	Cr	MIL-53(Cr) lt	monoclinic	19.685(4)	7.849(1)	6.782(1)	104.90(1)	C2/c	0.413^{d}	22.4	7
	Fe	MIL-53(Fe) lt	monoclinic	19.3197(2)	15.0362(2)	6.83508(6)	96.305(1)	C2/c	0.392 ^e	21.4	8
-	Ga	IM-19 p1	monoclinic	19.3021(33)	7.1577(15)	6.7156(16)	95.133(18)	-	0.372^{d}	20.4	This work
	Ga	IM-19 p2	orthorhombic	16.7338(31)	13.2824(26)	6.7413(9)		-	0.794^{b}	38.4	This work
	Al	MIL-53(Al) ht	orthorhombic	6.608(1)	16.675(3)	12.813(2)		Imma	0.768 ^f	37.5	2
	Cr	MIL-53(Cr) ht	orthorhombic	6.812(1)	16.733(1)	13.038(1)		Imma	0.779 ^f	37.9	3
			orthorhombic	16.733(1)	13.038(1)	6.812(1)		Imcm	0.779^{b}	37.9	7
	Fe	MIL-53(Fe) ht	monoclinic	21.2693(3)	6.7589(1)	6.8838(2)	114.625(2)	C2/c	0.350^{d}	19.3	8
	v	MIL-47	orthorhombic	6.818(1)	16.143(3)	13.939(2)		Pnma	0.863 ^f	40.8	4

Table S1 Unit-cell parameters of IM-19 and related M(OH)(BDC) materials (where M=Al, Cr, Fe, V, In) with H2BDC,DMF and H2O as guest molecules and guest-free.

- 1. M. Vougo-Zanda, J. Huang, E. Anokhina, X. Wang and A. J. Jacobson, *Inorg. Chem.*, 2008, doi:10.1021/ic800008f.
- 2. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, *Chem. Eur. J.*, 2004, **10**, 1373-1382.
- 3. F. Millange, C. Serre and G. Férey, *Chem. Commun.*, 2002, 822-823.
- 4. K. Barthelet, J. Marrot, D. Riou and G. Férey, *Angew. Chem. Int. Ed.*, 2002, **41**, 281-284.
- 5. E. V. Anokhina, M. Vougo-Zanda, X. Q. Wang and A. J. Jacobson, *J. Am. Chem. Soc.*, 2005, **127**, 15000-15001.
- 6. F. Millange, C. Serre, N. Guillou, G. Férey and R. I. Walton, *Angew. Chem. Int. Ed.*, 2008, **47**, 4100-4105.
- 7. C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer and G. Férey, J. *Am. Chem. Soc.*, 2002, **124**, 13519-13526.
- 8. F. Millange, N. Guillou, R. I. Walton, J.-M. Greneche, I. Margiolaki and G. Férey, *Chem. Commun.*, 2008, 4732-4734.

^{*a*} d/D=c/a. ^{*b*} d/D=b/a. ^{*c*} $d/D=b/(c.sin(\beta))$. ^{*d*} $d/D=b/(a.sin(\beta))$. ^{*e*} $d/D=(b/2)/(a.sin(\beta))$. ^{*f*} d/D=c/b. ^{*g*} Conventional space group: C2/c.