Investigation of the nucleation and growth dynamics of FePt nanoparticles prepared via a high temperature synthesis route employing PtCl$_2$ as platinum precursor

Hauke Heller,a Kirsten Ahrenstorf,a Jose A. C. Broekaertb and Horst Wellera*

a University of Hamburg, Institute of Physical Chemistry, Hamburg, Germany. E-mail: weller@chemie.uni-hamburg.com
b University of Hamburg, Institute of Inorganic and Applied Chemistry, Hamburg, Germany. E-mail: jose.broekaert@chemie.uni-hamburg.de

Fig. S1 Fe$_{40}$Pt$_{50}$ particles (as determined by EDX) obtained with a molar ratio of 3:1 of Fe(acac)$_3$ over Pt(acac)$_2$. A lighter hull can be seen around the particles that we attribute to iron oxide, as the position of the (111) reflex of FePt (40.1 $^{\circ}$) correlates to \simFe$_{12}$Pt$_{8}$ and does not fit the high iron content.