Dimerisation of Nitrile Oxides: a Quantum-chemical Study

Supplementary Information

Tibor Pasinszki*a, Balázs Hajgatób, Balázs Havasi*c and Nicholas P. C. Westwoodd

a Department of Inorganic Chemistry, Institute of Chemistry, Eötvös Loránd University Budapest, H-1117 Budapest, Pázmány P. sétány 1/A, Hungary.
b Vrije Universiteit Brussel, Eenheid Algemene Chemie, Pleinlaan 2, B-1050 Brussels, Belgium; Hasselt University, Departement SBG, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.
c Department of Inorganic Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Gellért tér 4, Hungary.
d Guelph-Waterloo Centre for Graduate Work in Chemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

*Author for correspondence; e-mail: pasinszki@chem.elte.hu.
Table S1: Total and relative energies of selected fluoro derivatives

<table>
<thead>
<tr>
<th></th>
<th>MRCI(2,2)</th>
<th>MRCI(2,2)+DA</th>
<th>MR-AQCC(2,2)</th>
<th>MRCI(4,4)</th>
<th>MRCI(4,4)+DA</th>
<th>MR-AQCC(4,4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total energy</td>
<td>ΔG</td>
<td>Total energy</td>
<td>ΔG</td>
<td>Total energy</td>
<td>ΔG</td>
</tr>
<tr>
<td>2 FCNO</td>
<td>---</td>
<td>---</td>
<td>2(-267.280205)</td>
<td>119</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ctc</td>
<td>-534.314265</td>
<td>0</td>
<td>-534.569814</td>
<td>0</td>
<td>-534.627587</td>
<td>0</td>
</tr>
<tr>
<td>TS2</td>
<td>.3001833</td>
<td>35</td>
<td>.557781</td>
<td>40</td>
<td>.616424</td>
<td>28</td>
</tr>
<tr>
<td>ttc</td>
<td>.317331</td>
<td>-8</td>
<td>.571730</td>
<td>-5</td>
<td>.628540</td>
<td>-2</td>
</tr>
<tr>
<td>TS5</td>
<td>.309642</td>
<td>15</td>
<td>.564997</td>
<td>16</td>
<td>.621988</td>
<td>18</td>
</tr>
<tr>
<td>tcc</td>
<td>.318680</td>
<td>-11</td>
<td>.573058</td>
<td>-16</td>
<td>.629590</td>
<td>-5</td>
</tr>
<tr>
<td>fur</td>
<td>.355315</td>
<td>-94</td>
<td>.615065</td>
<td>-105</td>
<td>.668079</td>
<td>-92</td>
</tr>
</tbody>
</table>

a Total energies are in atomic units and relative Gibbs energies are in kJ/mol. Calculated using the 6-311+G(2d) basis set. Geometries, ZPE, and thermal corrections are calculated at the UB3LYP/6-311+G(d) level. Valence electrons were included in the correlation energy calculations (“fc”).
Table S2: Total energies (in atomic units) of the minima and transition states of the lowest energy TS5 dimerisation routes of Nitrile Oxides to Furoxansa

<table>
<thead>
<tr>
<th></th>
<th>FCNO</th>
<th>CICNO</th>
<th>BrCNO</th>
<th>CH\textsubscript{3}CNO</th>
<th>NCCNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCNO</td>
<td>-267.36529</td>
<td>-627.3833</td>
<td>-2740.3079</td>
<td>-207.5258</td>
<td>-260.34694</td>
</tr>
<tr>
<td>TS1</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ctc</td>
<td>-534.80422</td>
<td>-1254.8041</td>
<td>-5480.6332</td>
<td>-415.0566</td>
<td>-520.69592</td>
</tr>
<tr>
<td>TS2</td>
<td>-534.79312</td>
<td>-1254.7953</td>
<td>-5480.6255</td>
<td>-415.0414</td>
<td>-520.68149</td>
</tr>
<tr>
<td>ttc</td>
<td>-534.80433</td>
<td>-1254.8070</td>
<td>-5480.6360</td>
<td>-415.0550</td>
<td>-520.69369</td>
</tr>
<tr>
<td>TS5</td>
<td>-534.79697</td>
<td>-1254.8028</td>
<td>-5480.6332</td>
<td>-415.0452</td>
<td>-520.68865</td>
</tr>
<tr>
<td>fur</td>
<td>-534.84724</td>
<td>-1254.8548</td>
<td>-5480.6873</td>
<td>-415.1086</td>
<td>-520.74377</td>
</tr>
</tbody>
</table>

a Calculated at the MR-AQCC(2,2)//UB3LYP/cc-pVTZ level. Total energies of monomers are calculated at the SR-AQCC//B3LYP/cc-pVTZ level.

Table S3: Total energies (in atomic units) of the minima and transition states of the dimerisation routes of Nitrile Oxides to 1,2,4-oxadiazole-4-oxides (SP1) and 1,4,2,5-dioxadiazines (SP2)a

<table>
<thead>
<tr>
<th></th>
<th>FCNO</th>
<th>ClCNO</th>
<th>BrCNO</th>
<th>CH\textsubscript{3}CNO</th>
<th>NCCNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCNO</td>
<td>-267.36611</td>
<td>-627.39130</td>
<td>-2740.3698</td>
<td>-207.5295</td>
<td>-260.35009</td>
</tr>
<tr>
<td>TSs1</td>
<td>-534.70210</td>
<td>-1254.7403</td>
<td>-5480.6933</td>
<td>-415.0137</td>
<td>-520.63764</td>
</tr>
<tr>
<td>SP1</td>
<td>-534.87952</td>
<td>-1254.8856</td>
<td>-5480.8321</td>
<td>-415.1501</td>
<td>-520.76870</td>
</tr>
<tr>
<td>TSs2</td>
<td>-534.71199</td>
<td>-1254.7331</td>
<td>-5480.6832</td>
<td>-415.0054</td>
<td>-520.62444</td>
</tr>
<tr>
<td>SP2</td>
<td>-534.90636</td>
<td>-1254.8952</td>
<td>-5480.8389</td>
<td>-415.1487</td>
<td>-520.77215</td>
</tr>
</tbody>
</table>

a Calculated at the CCSD//B3LYP/cc-pVTZ and CCSD(T)//B3LYP/cc-pVTZ (in parenthesis) levels.

Table S4: Total energies (in atomic units) of the NCCNO dimers and trimersa

<table>
<thead>
<tr>
<th></th>
<th>Dimers</th>
<th>Trimmers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSdm1</td>
<td>TStr1</td>
</tr>
<tr>
<td></td>
<td>DM1</td>
<td>TStr1b</td>
</tr>
<tr>
<td></td>
<td>TSDm2</td>
<td>TR1</td>
</tr>
<tr>
<td></td>
<td>DM2</td>
<td>TStr2,3b</td>
</tr>
<tr>
<td></td>
<td>TS1b</td>
<td>TR2</td>
</tr>
<tr>
<td></td>
<td>furb</td>
<td>TStr3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TR3</td>
</tr>
</tbody>
</table>

a Calculated at the CCSD//B3LYP/cc-pVTZ level.
b Calculated at the MR-AQCC(2,2)//UB3LYP/cc-pVTZ level.
Figure S1
Dimerisation of FCNO

MR-AQCC(2,2)/6-311+G(2d)//UB3LYP/6-311+G(d)
UB3LYP/6-311+G(d)

Supplementary Material (ESI) for PCCP
This journal is © the Owner Societies 2009
Figure S2

Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of minima on the potential energy surface for FCNO dimerisation (UB3LYP/cc-pVTZ).
Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of minima on the potential energy surface for BrCNO dimerisation (UB3LYP/cc-pVTZ).

Figure S3

Supplementary Material (ESI) for PCCP

This journal is © the Owner Societies 2009
Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of minima on the potential energy surface for CH$_3$CNO dimerisation (UB3LYP/cc-pVTZ).

Figure S4
Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of minima on the potential energy surface for NCCNO dimerisation (UB3LYP/cc-pVTZ).

Figure S5
Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of 1,2,4-oxadiazole-4-oxides, SP1 (B3LYP/cc-pVTZ).

Figure S6
Figure S7

Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of 1,4,2,5-dioxadiazines, SP2 (B3LYP/cc-pVTZ).
Geometries (bond lengths in Å and bond angles in degrees) and bond orders (circled numbers) of NCCNO dimers and trimers (B3LYP/cc-pVTZ).

Figure S8