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We now introduce a simple mechanical model from which we will derive the unbinding rate
k−

a (x) and the binding rate ka(x) using the two dimensional form of Kramers’ theory:
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Where λ‡
1 is the negative eigenvalue of the Hessian of the potential energy surface at the

transition state, λa
i are the eigenvalues of the Hessian at the bound state. Note that a similar

expression exists for ka, the binding rate, but in this expression we evaluate the Hessian at the
unbound state. Equation 1 is the Kramers’ theory expression for a two dimensional potential
energy surface.
Consider myosin interacting with actin. We might expect, for small displacements, that the
mechanics of this system are well-modeled by a point mass moving in 2D attached to a linear,
zero-length spring. At any given time, the position of the actin binding site on myosin is
ε = ε1i + ε2j. We may assume that the spring is fixed in space, attached at a point we
arbitrarily call 0i + 0j. Some distance ε0 = xi + Lj away, there is a binding site (see Fig. 1).
The spring creates a potential that may be described as:
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k
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2
)

the binding site creates a potential well Vb(ε) that, for simplicity, we assume to be deep and
narrow.
In this simple mechanical model, there are two states. The system can be bound (i.e. in
the basin of attraction of the binding site) or the system can be unbound (i.e. in the basin
of attraction of the spring’s potential well). Using Kramers’ theory (Eq. 1), we can write an
expression for the rate constant for binding, ka(x), where x is the distance between the center
of the binding site and the attachment point of the spring.
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First, however, we need expressions for Vu(x) and V ‡(x). Assuming that the binding site is
narrow, its position will have a negligible effect on Vu(x), and so we may write Vu(x) = V 0

j = 0.
We expect that the exact shape of the binding site will have a minor effect on the rate constant,
so here we posit a rather unphysical potential to ease the mathematics. Later, we show that
our result is independent of this assumption. Thus, we define:
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Note that ε0 = xi + Lj and ε = ε1i + ε2j. Thus,
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If the binding site is narrow and deep, then ε ≈ 0 will cause both partial derivatives to disappear
and will therefore be the critical point associated with the unbound state. Neglecting terms of
order σ2k/(σ2k +Eb), ε ≈ ε0 will cause both partial derivatives to disappear and will therefore
be the critical point associated with the bound state.
For a circular potential well, the three critical points (the bound, unbound and transition states)
must lie on a straight line by symmetry arguments. If this potential well is relatively deep and
narrow, we might expect that the distance from the bound state to the transition state, w, is
approximately constant with x. Then, from geometry, we may derive the following expressions
for ε‡1(x) and ε‡2(x) as shown in Fig. 1c and d:

ε‡1(x) = x − wx√
x2 + L2

and

ε‡2(x) = L − wL√
x2 + L2

Note that these results are independent of the exact form of the binding well, provided that it is
approximately circular. These expressions do an adequate job of predicting the exact position
of the transition state (see Fig. 1b); though, since w is not exactly a constant we may use
slightly different values for w to best-fit different sections of the x-dependence of the transition
state.
Therefore, we may write V ‡
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Figure 1: The potential energy surface for the mechanical model and estimates of the position
of the transition state. a) schematic of the mechanical model. A binding site (denoted with the
“+” sign) interacts with the actin binding domain of myosin (denoted with the “-” sign). Note
that we use these signs for simplicity, we do not mean to imply that the binding interaction is
electrostatic in nature. The position of the binding site relative to the equilibrium position of
the actin binding site of myosin is denoted xi + Lj. The position of the actin binding domain
is ε1i + ε2j. b) a plot of transition state position as a function of x. Gray dots are numerical
simulations. Both solid curves are analytic estimates that assume the width of the binding well
w is constant as described in the text. Since w is not exactly constant, different estimates of
w fit different parts of the data better. The solid black curve uses an estimate of w that fits
the first part (low x) of the curve, and dashed curve uses an estimate of w that fits the large x
region. Right, contour plots of potential energy (units of kBT ) as a function of the two spatial
dimensions ε1 and ε2. The bound (b), unbound (u) and transition (‡) state are shown as gray
dots. Two different values of x are shown: c) is x = 1 and d) is x = 0.

Thus, since the potential energy of the unbound state is 0 for any value of x:
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Where V ‡
0 is the potential energy of the transition state when x = 0. While, in general λ‡

i could
be a function of x, if the binding well is very steep then this will be a very weak function, so we
assume it to be a constant. We can define the variable k0

a to be the reaction rate when x = 0
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– i.e. the maximum reaction rate. Then, we may write:

ka(x) = k0

a exp
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Neglecting terms of order σ2k/(σ2k + Eb), the bound state has a potential energy minimum at
ε = xi + Lj – e.g. Vj ≈ k/2(x2 + L2)−Eb. Similarly, we may write and simplify an expression
for the unbinding rate constant k−

a .
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We may simplify these equations if we take the limit as k → ∞ – i.e. the molecular spring
becomes very stiff. However, in order to have the chemical reactions occur at a non-negligible
rate, we must also adjust w and L, letting them become very small. Recall, w is the effective
radius of the binding well, which depends on some combination of σ and Eb. Therefore, we
may pick w and L to scale as 1/k, w = cwkBT/(`k) and L = cLkBT/(`k), where cw and cL

are non-dimensional constants and ` is the spacing between binding sites. Then, plugging into
Eq. 2 we find:
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And plugging into Eq. 3:
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Where a = cw/` is a constant.
Comment 1: Note that Eq.’s 4 and 5 might seem to violate the law of detailed balance (i.e. that
ka/k

−
a = exp(−∆G/kBT ) = exp(−kx2/2kBT ). However, note that for the exact expressions,

Eq.’s 2 and 3, detailed balance is satisfied. The stiff spring approximation allows us to neglect
the region of space where detailed balance would be violated.
Comment 2: The form of Eq 5 means that at large strain, cross-bridges may be ripped from
their binding sites. Intuitively, this results makes sense. However, for small a, there is little
functional difference at reasonable loads between assuming constant k−

a and using Eq 5.
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