SUPPORTING INFORMATION

¹⁴N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: Evidence for a nitrogen in the dithiol bridge.

Alexey Silakov, Brian Wenk, Eduard Reijerse, Wolfgang Lubitz Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim a. d. Ruhr, 45470, Germany

Figure S1. X-band 3pulse ESEEM vs Magnetic field of the Hox state of the H-clustre from *Desulfovibrio desulfuricans*. Experimental conditions: T, 15K; MW frequency, 9.7776 GHz; length of $[\pi/2]$ pulses, 8 ns; delay between first two MW pulses (τ), 180 ns.

Two types of ¹⁴N signals can be identified in this ESEEM spectrum and assigned to two ¹⁴N nuclei (green and magenta arrows). Magenta arrows indicate signals which show very little field dependence while the ones indicated with green show a strong dependents.

Figure S2. DFT models, used in the study of the quadrupole couplings of the H-cluster in the H_{ox} state. Balls on the structure of A show the constraints, made for the geometry optimization. The same constraints were used for **B** and **C**. In **D** no atom was fixed. Distances of some N--H bonds are included.

We note that in the case of the $H_{ox}^{[NH]}$ -H₂O model the unpaired spin density was found to be equally distributed over both irons (see figure S3 and table S1) which is rather different from the $H_{ox}^{[NH]}$ model where most of the spin density was found at the distal iron. An equal distribution of the spin density over both sites of the [2Fe]_H subcluster in the H_{ox} state was, however, suggested by our ⁵⁷Fe study [1_Silakov2007]. Hence it is tempting to suggest that there is a water molecule present at the distal iron in the H_{ox} state of DdH, similar to CpI. More advanced DFT calculations on the complete H-cluster need to be performed in order to clarify this question. A possible way to resolve this experimentally is to investigate DdH in D₂O and/or $H_2^{17}O$ by means of advanced EPR methods.

Figure S3. Effect of H_2O on SOMOs of $H_{ox}^{[NH]}$ model. Isosurfaces were obtained at 0.02 level.

	naked H _{ox} ^[NH]	$H_{ox}^{[\rm NH]}$	$H_{ox}^{[NH]}$ - H_2O	$H_{ox}^{[\rm NH2]}$
Charge	-1	0	0	+1
	Spin Populations			
N (Ala)	-	-0.000007	-0.000050	-0.000007
N (Ile)	-	0.000099	0.000046	0.000083
N (Lys)	-	0.000185	0.000093	0.000077
$N(CN_d)$	0.074328	0.042323	0.001382	0.044353
$N(CN_p)$	0.001601	0.003034	0.000492	0.002529
N (DTN)	-0.003330	-0.004001	-0.001795	-0.006738
Fe (Fe _p)	0.064978	0.126337	0.495016	0.100359
Fe (Fe _d)	1.088289	0.970039	0.476411	1.000737
S (Cys)	0.005002	0.002121	0.018734	0.000600
S (DTN)	-0.001564	-0.024939	-0.001174	-0.026818
S (DTN)	-0.022621	-0.022854	-0.008200	-0.022520
S (CysDTN)	-	0.000016	0.000068	0.000103
O (H ₂ O)	-	-	0.009426	-

Table S1. Mulliken spin population analysis on selected atoms:

According to the Mulliken population analysis, the unpaired spin density is mainly localized at the distal iron. The only exception is $H_{ox}^{[NH]}-H_2O$ model, in which spin population on both irons is roughly equal.

References

 Silakov, A, Reijerse, E. J., Albracht, S. P. J., Hatchikian, E. C., and Lubitz, W.; The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: A Q-band Fe-57-ENDOR and HYSCORE study(2007) Journal of the American Chemical Society 129: 11447-11458