Supplementary Information

Controlling Intermolecular Spin Interactions of La@C$_{82}$ in Empty Fullerene Matrices

Yasuhiro Ito,a Jamie H. Warner,a Richard Brown,a Mujtaba Zaka,a Rudolf Pfeiffer,b
Takayuki Aono,c Noriko Izumi,c Haruya Okimoto,c John J. L. Morton,a,d
Arzhang Ardavan,d Hisanori Shinohara,c Hans Kuzmany,b Herwig Peterlik,b
and G. Andrew D. Briggsa

aDepartment of Materials, Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), University of Oxford, Parks Rd, Oxford, OX1 3PH, UK. E-mail: yasuhiro.ito@materials.ox.ac.uk

bFaculty of Physics, University of Vienna, Strudlhofgasse 4, Vienna, A-1090, Austria

cDepartment of Chemistry and Institute for Advanced Research, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan

dCentre for Advanced Electron Spin Resonance (CAESR), Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd, Oxford, OX1 3PU, UK
Table S1 Numerical data of the simulated ESR spectra of La@C_{82} in C_{2n} matrices. Anisotropic g and a tensor, rotational correlation time are (2.0021 2.0013 2.0010), (2.15 2.25 4.85) and 4 ns, respectively.
Table S2 Numerical data of k_1 parameter and the rotational correlation time τ_r calculated by the equation S1.

The linear m_i contribution (equation 1) is determined avoiding contribution from inhomogeneous broadening and other unspecified interactions.\(^1\) The rotational correlation time τ_r can be calculated by the equation S1:

$$k_1 = \frac{1}{15} \frac{2}{3} \Delta g \frac{\mu_B B_0}{h} \cdot \frac{2}{3} \Delta a \cdot \left[4\tau_r + \frac{3\tau_r}{1 + (\omega \tau_r)^2} \right]$$ \hspace{1cm} (S1)

where μ_B, B_0, h, ω are Bohr magneton, the magnetic field, Planck's constant and the microwave frequency of measurements, respectively. Differences of principle values of the g matrix and the hfi tensor have been determined previously as $\Delta g = g_1 - g_1 = 0.007$ and $\Delta a = a_1 - a_1 = 5$ MHz.\(^2\)

Table S3 Numerical data of crystal structures for C$_{2n}$ powder with La@C$_{82}$. All dimensions are in nm, the angles in degrees and the volume in nm3. The a and c axes of the corresponding hexagonal unit cells are given for easier comparison of the respective amount of distortion from the ideal lattices, i.e. from $c/a=1.633$ for hcp and $c/a=2.449$ for fcc lattice. The error of the experimental measurements is less than 0.5 percent.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lattice</th>
<th>a (hex)</th>
<th>c (hex)</th>
<th>Volume (hex)</th>
<th>a' (fcc)</th>
<th>α (rhom)</th>
<th>Volume (rhom)</th>
<th>c/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_{60}$+0.1mol%La</td>
<td>fcc</td>
<td>1.000</td>
<td>2.444</td>
<td>2.12</td>
<td>1.413</td>
<td>0.9984</td>
<td>60.1</td>
<td>0.706</td>
</tr>
<tr>
<td>C$_{60}$+1mol%La</td>
<td>hcp</td>
<td>1.001</td>
<td>1.638</td>
<td>1.42</td>
<td></td>
<td></td>
<td></td>
<td>1.637</td>
</tr>
<tr>
<td>C$_{78}$+0.1mol%La</td>
<td>rhombohedral</td>
<td>1.248</td>
<td>3.204</td>
<td>4.32</td>
<td>1.288</td>
<td>57.9</td>
<td>1.44</td>
<td>2.568</td>
</tr>
<tr>
<td>C$_{78}$+1mol%La</td>
<td>rhombohedral</td>
<td>1.297</td>
<td>3.335</td>
<td>4.86</td>
<td>1.340</td>
<td>57.9</td>
<td>1.62</td>
<td>2.571</td>
</tr>
<tr>
<td>C$_{82}$+0.1mol%La</td>
<td>hcp</td>
<td>1.120</td>
<td>1.836</td>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td>1.645</td>
</tr>
<tr>
<td>C$_{82}$+1mol%La</td>
<td>rhombohedral</td>
<td>1.310</td>
<td>3.422</td>
<td>5.09</td>
<td>1.369</td>
<td>57.2</td>
<td>1.70</td>
<td>2.611</td>
</tr>
</tbody>
</table>
Fig. S1 a) Schematic model of La@C_{82} in C_{2n} fcc-crystals; b) Concentration dependence of the distance between La@C_{82} molecules in C_{2n} fcc-crystals.

In order to determine the range at concentrations to be examined, we calculated the change in average inter-fullerene distance as a function of the concentration. If it is assumed that La@C_{82} molecules are dispersed completely by empty fullerene (C_{2n}) matrices, that is, La@C_{82} molecules are located at the center of C_{2n} fcc-crystals (Fig. S1a), the distance L between La@C_{82} molecules is calculated by follows.3

$$L = a \times \left(\frac{c}{25} \right)^{1/3}$$ \hspace{1cm} (S2)

$$a = 1.31 \times d(C_{2n}) + 0.492$$ \hspace{1cm} (S3)

$$d(C_{2n}) = 0.71 \times \left(\frac{2n}{60} \right)^{1/2}$$ \hspace{1cm} (S4)

where C, a and $d(C_{2n})$ are concentration of La@C_{82} (mol%), lattice constant of C_{2n} fcc-crystals and diameter of empty fullerenes, respectively. A concentration range between 0.1 \rightarrow 1 mol% is chosen because in this range, a small variation in the concentration leads to a large change in the inter-fullerene distance.

Fig. S2 a) Exchange frequency; and b) FWHM linewidth dependences of the hyperfine structure of La@C$_{82}$. These spectra are simulated by EasySpin software.4

Fig. S3 Saturation curves of La@C_{82} in 0.1, 0.5 and 1 mol% in a) C_{70}; b) C_{78}; and c) C_{84} matrices at room temperature. Microwave frequency and modulation amplitude are 9.867 GHz and 0.025 mT, respectively.
Fig. S4 Microwave power dependence of the ESR spectra of La@C_{82} in a)0.1; b)0.5; c)1 mol% in C_{70} matrix; d)0.1; e)0.5; f)1 mol% in C_{78} matrix; g)0.1; h)0.5; i)1 mol% in C_{84} matrix at room temperature. Microwave frequency and modulation amplitude are 9.867 GHz and 0.025 mT, respectively.