On the Electronic Structure and Stability of Icosahedral r-X₂Z₁₀H₁₂ and Z₁₂H₁₂²⁻ Clusters; $r = \{ortho, meta, para\}, X = \{C, Si\}, Z = \{B, Al\}^*$

Josep M. Oliva^(a), Paul von Ragué Schleyer^(b), Gabriel Aullón^(c), José I. Burgos^(d), Antonio Fernández-Barbero^(e), Ibon Alkorta^(f)

(a) Instituto de Química-Física Rocasolano (CSIC), Serrano 119, Madrid 28006, Spain

(b) Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA

(c) Departament de Química Inorgànica and Institut de Química Teòrica i Computacional (IQTCUB),

Universitat de Barcelona, Diagonal 647, Barcelona 08028, Spain

(d) Instituto de Ciencias Matemáticas, CSIC-UAM-UCM-UC3M, Serrano 113, Madrid 28006, Spain

(e) Group of Complex Fluid Physics, Universidad de Almería, Almería 04120, Spain

(f) Instituto de Química Médica (CSIC), Juan de la Cierva 3, Madrid 28006, Spain

SUPPLEMENTARY INFORMATION: This section includes the experimental (where available) and computed symmetry-unique cage distances, Mulliken and natural bond orbital (NBO) charges [1], as well as the atom-in-molecules (AIM) topological analysis of the electron density for the $Z_{12}H_{12}^{2-}$ and $r-X_2Z_{10}H_{12}$ clusters; $X = \{C, Si\}, Z = \{B, Al\}, r = \{ortho, meta, para\}$. All computations carried out with the B3LYP/6-311+G(d,p) model. We also include the continuous shape measures S_{IC} [2] for the available crystal structures of the clusters included in this work (Table S3). In the colour PDF or HTML file, bond critical points, ring critical points and cage critical points - Figure S1, from (a) to (n) - are represented in small red, yellow and green spheres respectively.

^{*} Presented at the XIV International Symposium on Small Particles and Inorganic Clusters, 15-19 September 2008, Valladodid, Spain.

Table S1. Experimental (where available) and computed symmetry-unique cage distances for $Z_{12}H_{12}^{2-}$ and r- $X_2Z_{10}H_{12}$ clusters; X = {C, Si}, Z = {B, Al}, r = {*ortho, meta, para*}. All computations with the B3LYP/6-311+G(d,p) model. Distance = Computed/*Experimental*. Relative error: $|\epsilon_{\Delta}| = |(d_{comp} - d_{exp})/d_{exp}| \times 100$ (%).

71. 1	V-7	Comm / From		- 1					e.ip	, í
$VZ \rightarrow X$	X=Ζ	Comp/Exp	$ \epsilon_{\Delta} $							
Z=B	Z_1Z_2	1.786/1.785	0.1							
		[3]								
Z=A1	Z_1Z_2	2.702/2.702	0.0		Comp/Exp					
		[4]			_					
				Comp	R=Me		$\downarrow Z \to X$			
	Ortho	X=C [5]		X=Si	X=Si [6]	$ \epsilon_{\Delta} $		Ortho	X=C	X=Si
Z=B	X_1X_2	1.625/1.626	0.4	2.314	2.325/2.308	0.7	Z=A1	X_1X_2	1.632	2.448
	X_1Z_3	1.720/1.717	0.2	2.139	2.138/2.117	1.0		X_1Z_3	2.158	2.620
	X_1Z_4	1.698/1.689	0.5	2.025	2.026/2.018	0.4		X_1Z_4	2.253	2.572
	Z_3Z_4	1.779/1.765	0.8	1.862	1.854/1.848	0.3		Z_3Z_4	2.566	2.714
	Z_3Z_8	1.764/1.760	0.2	1.777	1.779/1.770	0.5		Z_3Z_8	2.678	2.657
	Z_4Z_5	1.785/1.785	0.0	1.890	1.881/1.859	1.2		Z_4Z_5	2.579	2.752
	Z_4Z_8	1.781/1.773	0.5	1.775	1.773/1.774	0.1		Z_4Z_8	2.651	2.697
	Z_4Z_9	1.777/1.768	0.5	1.775	1.774/1.765	0.5		Z_4Z_9	2.650	2.680
	Z_8Z_9	1.793/1.789	0.2	1.789	1.788/1.783	0.3		Z_8Z_9	2.785	2.728
	Z_9Z_{12}	1.783/1.780	0.2	1.779	1.778/1.774	0.2		Z_9Z_{12}	2.711	2.699
Z=B	Meta	X=C [7]	$ \epsilon_{\Delta} $	X=Si			Z=Al	Meta	X=C	X=Si
	X_1Z_2	1.693/1.693	0.0	2.033				X_1Z_2	2.176	2.562
	X_1Z_4	1.714/1.709	0.3	2.045				X_1Z_4	2.358	2.617
	X_1Z_5	1.711/1.708	0.2	2.032				X_1Z_5	2.207	2.586
	Z_2Z_3	1.789/1.778	0.6	2.036				Z_2Z_3	2.453	2.788
	Z_3Z_4	1.767/1.763	0.2	1.848				Z_3Z_4	2.515	2.688
	Z_4Z_5	1.783/1.777	0.3	1.872				Z_4Z_5	2.561	2.728
	Z_4Z_8	1.771/1.767	0.2	1.764				Z_4Z_8	2.651	2.664
	Z_4Z_9	1.780/1.777	0.2	1.784				Z_4Z_9	2.693	2.699
	Z_5Z_9	1.778/1.772	0.3	1.774				Z_5Z_9	2.678	2.682
	Z_9Z_{10}	1.793/1.782	0.6	1.798				Z_9Z_{10}	2.787	2.749
Z = B	Para	X=C [6]	$ \varepsilon_{\Delta} (\%)$	X=Si			Z=Al	Para	X=C	X=Si
	X_1Z_2	1.708/1.712	0.2	2.037				X_1Z_2	2.265	2.590
	Z_2Z_3	1.786/1.785	0.1	1.889				Z_2Z_3	2.575	2.755
	$Z_2 - Z_7$	1.767/1.772	0.3	1.762				$Z_2 - Z_7$	2.619	2.653

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010

Table S2. Mulliken and NBO (Natural Bond Orbital) charges (in units of |e|) for the $Z_{12}H_{12}^{2-}$ and r- $X_2Z_{10}H_{12}$ clusters included in this work, $r = \{ortho, meta, para\}, X = \{C, Si\}, Z = \{B, Al\}$. Computations on the optimized geometries at B3LYP/6-311+G(d,p) level of theory. Note: The atom labels follow from Figure 1 in main text and Table S1 above. The hydrogen labels are equivalent to cage atom labels, namely, H(j) is bound to Z(j) or X(j).

Cluster	Atom	<i>a</i> (Mulliken)	q(NBO)				
BiaHia ²⁻	B ₁	-0.027	-0.175				
212112	H ₁	-0 140	0.008				
$Al_{12}H_{12}^{2-}$	Alı	0.033	0.117				
111/211/2	H ₁	-0.200	-0.283	Cluster	Atom	<i>a</i> (Mulliken)	q(NBO)
$o-C_{2}B_{10}H_{12}$	C_1	-0.146	-0.496	o-Si ₂ B ₁₀ H ₁₂	Si	0.764	0.892
2 10 12	H ₁	0.247	0.300	2 10 12	H ₁	0.024	-0.025
	B ₃	-0.114	0.158		B ₃	-0.655	-0.333
	H ₃	0.019	0.054		H ₃	0.061	0.058
	B ₄	-0.158	0.000		B ₄	-0.307	-0.286
	H ₄	0.017	0.069		H_4	0.059	0.078
	B_8	0.127	-0.165		B_8	0.191	-0.185
	H ₈	0.014	0.078		H ₈	0.035	0.082
	B ₉	0.122	-0.139		B ₉	0.050	-0.153
	H ₉	0.015	0.073		H ₉	0.025	0.079
$m-C_2B_{10}H_{12}$	C ₁	-0.052	-0.639	$m-Si_2B_{10}H_{12}$	Si ₁	1.160	1.083
	H_1	0.233	0.299		H_1	0.020	-0.028
	B ₃	-0.367	0.149		B ₃	-0.720	-0.436
	H ₃	0.037	0.066		H ₃	0.070	0.074
	B ₄	0.015	-0.021		B_4	-0.242	-0.280
	H ₄	0.018	0.073		H ₄	0.054	0.076
	B ₅	-0.115	0.058		B ₅	-0.414	-0.267
	H ₅	0.016	0.056		H ₅	0.045	0.074
	B ₉	0.170	-0.176		B ₉	0.182	-0.173
	H ₉	0.014	0.080		H ₉	0.035	0.079
$p-C_2B_{10}H_{12}$	C ₁	-0.157	-0.664	$p-{\rm Si}_{2}{\rm B}_{10}{\rm H}_{12}$	Si ₁	0.995	1.094
	H ₁	0.242	0.299		H ₁	0.021	-0.028
	B ₂	-0.038	0.005		B ₂	-0.256	-0.289
	H_2	0.021	0.068		H ₂	0.053	0.076

Supplementary Material (ESI) for *PCCP* This journal is © the Owner Societies 2010

Table S2 (cont)

Cluster	Atom	q(Mulliken)	q(NBO)	Cluster	Atom	q(Mulliken)	q(NBO)
$o-C_2Al_{10}H_{12}$	C ₁	-0.313	-1.239	o-Si ₂ Al ₁₀ H ₁₂	Si ₁	-0.011	-0.196
	H_1	0.234	0.276		H_1	0.012	-0.025
	Al ₃	0.292	0.805		Al ₃	0.108	0.392
	H ₃	-0.137	-0.255		H ₃	-0.103	-0.231
	Al ₄	0.037	0.442		Al ₄	0.031	0.294
	H ₄	-0.125	-0.230		H ₄	-0.102	-0.229
	Al ₈	0.239	0.240		Al ₈	0.136	0.186
	H ₈	-0.115	-0.246		H_8	-0.101	-0.229
	Al ₉	0.092	0.239		Al ₉	0.204	0.201
	H ₉	-0.117	-0.244		H ₉	-0.104	-0.229
$m-C_2Al_{10}H_{12}$	C ₁	-0.395	-1.623	m-Si ₂ Al ₁₀ H ₁₂	Si ₁	-0.028	-0.320
	H_1	0.210	0.267		H_1	0.004	-0.030
	Al ₃	0.254	0.819		Al ₃	0.118	0.408
	H ₃	-0.125	-0.231		H_3	-0.104	-0.226
	Al_4	0.126	0.503		Al_4	0.084	0.296
	H_4	-0.125	-0.238		H_4	-0.103	-0.228
	Al ₅	0.242	0.505		Al ₅	0.169	0.313
	H_5	-0.125	-0.231		H_5	-0.106	-0.229
	Al ₉	0.058	0.208		Al ₉	0.086	0.176
	H ₉	-0.119	-0.243		H ₉	-0.101	-0.227
$p-C_2Al_{10}H_{12}$	C ₁	-0.285	-1.604	p-Si ₂ Al ₁₀ H ₁₂	Si ₁	0.027	-0.324
	H_1	0.210	0.271		H_1	-0.001	-0.031
	Al ₂	0.143	0.500		Al ₂	0.098	0.299
	H ₂	-0.128	-0.233		H ₂	-0.103	-0.228

Table S3. Continuous shape measures (S_{IC}) [2] for experimental available crystal structures of borane (B₁₂R₁₂²⁻), *o*-carborane, *m*-carborane, *p*-carborane, *o*-silaborane and alane Al₁₂R₁₂²⁻.

BORANES

	Experimental values (Å)	S_{IC}
Reference*	Mean B-B distance	
[8]	1.779	0.015
[8]	1.775	0.022
[9]	1.786	0.001
[10]	1.776	0.008
[11]	1.776	0.052
[12]	1.783	0.013
[12]	1.775	0.028
[13]	1.793	0.002
[14]	1.790	0.003
[14]	1.782	0.003
[15]	1.783	0.002
[16]	1.784	0.001
$(K^{+})_{2} [B_{12}H_{12}]^{2} [3]$	1.779	0.001
$(Rb^{+})_{2}[B_{12}H_{12}]^{2}$ [3]	1.782	0.001
[17]	1.817	0.019
[18]	1.777	0.001
$(K^{+})_{3}[B_{12}H_{12}]^{2} I^{-}[3]$	1.774	0.002
$(K^{+})_{3}[B_{12}H_{12}]^{2} \Gamma[3]$	1.781	0.001
$(Cs^{+})_{3}[B_{12}H_{12}]^{2}$ I [3]	1.783	0.001
$(Rb^{+})_{3}[B_{12}H_{12}]^{2} Cl^{-}[18]$	1.776	0.000
$(Rb^{+})_{3}[B_{12}H_{12}]^{2}Br^{-}[18]$	1.778	0.000
$(Cs^{+})_{3}[B_{12}H_{12}]^{2}Br^{-}[18]$	1.782	0.001
$(Cs^{+})_{3}[B_{12}H_{12}]^{2}$ Cl ⁻ [18]	1.782	0.000
[19]	1.787	0.004
[19]	1.770	0.006
[20]	1.782	0.024
$(NH_4^+)_2 [B_{12}H_{12}]^{2-} [3]$	1.785	0.000
$(NH_4^+)_3 [B_{12}H_{12}]^{2-} I^- [3]$	1.781	0.000
[21]	1.776	0.001
$(NH_4^+)_3 [B_{12}H_{12}]^{2-} Br^- [18]$	1.782	0.000
[22]	1.775	0.002
[23]	1.763	0.008
[24]	1.785	0.007
[24]	1.785	0.031
[25]	1.782	0.001
[26]	1.776	0.004
[27]	1.773	0.005
[28]	1 792	0.002

Table S3 (cont)

ORTHO-CARBORANE

				Expe	erimenta	l distan	ces (Å)				$S_{\rm IC}$
Reference*	C-C	$C-B_A$	$C-B_B$	B_A - B_B	B_A - B_C	B_B - B_B	$B_B - B_C$	B_B - B_D	B_C - B_D	B_D - B_D	
[29]	1.647	1.679	1.711	1.743	1.726	1.765	1.776	1.773	1.781	1.756	0.110
[5]	1.645	1.717	1.703	1.771	1.760	1.778	1.778	1.774	1.785	1.785	0.081
[5]	1.626	1.717	1.689	1.765	1.760	1.785	1.773	1.768	1.789	1.780	0.126
[30]	1.633	1.723	1.711	1.764	1.763	1.782	1.778	1.776	1.788	1.796	0.087
[30]	1.637	1.700	1.701	1.767	1.744	1.782	1.767	1.765	1.774	1.792	0.086
[30]	1.620	1.712	1.686	1.765	1.757	1.775	1.774	1.773	1.786	1.775	0.117
[31]	1.595	1.667	1.680	1.710	1.707	1.740	1.742	1.730	1.752	1.762	0.103
[32]	1.626	1.706	1.692	1.796	1.782	1.767	1.781	1.781	1.775	1.777	0.101
[33]	1.627	1.704	1.684	1.760	1.752	1.773	1.772	1.663	1.770	1.755	0.113
[33]	1.599	1.693	1.671	1.762	1.761	1.778	1.753	1.751	1.762	1.777	0.142
[33]	1.610	1.675	1.643	1.699	1.759	1.803	1.742	1.718	1.779	1.869	0.245
[34]	1.708	1.712	1.694	1.719	1.760	1.796	1.699	1.717	1.790	1.910	0.114
[34]	1.584	1.704	1.645	1.660	1.668	1.724	1.774	1.768	1.737	1.788	0.195
[34]	1.706	1.705	1.703	1.729	1.755	1.774	1.712	1.717	1.763	1.806	0.051
[35]	1.429	1.658	1.804	1.727	1.651	1.750	1.704	1.776	1.721	1.474	0.304
[36]	1.666	1.700	1.685	1.753	1.723	1.783	1.752	1.760	1.764	1.762	0.080
[37]	1.624	1.713	1.693	1.768	1.769	1.777	1.771	1.768	1.784	1.776	0.107
[37]	1.625	1.704	1.690	1.758	1.763	1.775	1.773	1.774	1.778	1.764	0.101
[38]	1.622	1.694	1.691	1.745	1.743	1.752	1.757	1.738	1.762	1.763	0.110
[39]	1.683	1.719	1.713	1.767	1.770	1.711	1.746	1.742	1.765	1.778	0.070
* Same reference	for a di	fferent	row re	fers to a	differen	nt crysta	l/counte	erion(s)	(see refe	erence).	

META-CARBORANE

	Experimental distances (Å)											S_{IC}
Ref*	C···C	B_A - B_A	$B_B - B_B$	$B_D - B_D$	$C-B_A$	$C-B_B$	$C-B_C$	B_A - B_B	$B_B - B_C$	$B_B - B_D$	$B_{C}-B_{D}$	
[7]	2.614	1.778	1.767	1.782	1.693	1.709	1.708	1.763	1.777	1.777	1.772	0.101
[34]	2.715	1.674	1.706	1.737	1.683	1.671	1.706	1.684	1.720	1.727	1.724	0.062
[34]	2.748	1.693	1.707	1.747	1.696	1.704	1.747	1.702	1.743	1.731	1.740	0.055
[34]	2.601	1.779	1.768	1.785	1.687	1.707	1.710	1.761	1.777	1.772	1.770	0.109
[34]	2.695	1.656	1.685	1.735	1.672	1.676	1.723	1.689	1.637	1.728	1.720	0.068
[34]	2.666	1.769	1.731	1.767	1.695	1.715	1.735	1.735	1.755	1.757	1.750	0.050
[37]	2.609	1.774	1.762	1.768	1.693	1.705	1.708	1.771	1.767	1.771	1.756	0.103
* 0	* Some reference for a different new reference a different emistel/accurtanian(a) (accurference)											

* Same reference for a different row refers to a different crystal/counterion(s) (see reference).

PARA-CARBORANE

	Expe	S_{IC}			
Reference*	C···C	B-B	C-B	B-B ^{\$}	
[7]	3.071	1.777	1.704	1.765	0.117
[7]	3.083	1.785	1.712	1.772	0.118
[37]	3.052	1.781	1.704	1.762	0.137
[37]	3.060	1.781	1.706	1.760	0.131

[3/] 3.060 1.781 1.700 1.700 0.151
* Same reference for a different row refers to a different crystal/counterion(s) (see reference). B-B: same pentagon B-B^{\$}: between pentagons

ORTHO-SILABORANE

	Experimental distances (Å)										S _{IC}
Reference	Si-Si	$Si-B_A$	$Si-B_B$	B_A - B_B	B_A - B_C	B_B - B_B	B_B - B_C	B_B - B_D	B_C - B_D	B_D - B_D	
[40]	2.314	2.111	2.014	1.854	1.780	1.863	1.771	1.766	1.782	1.780	0.575
[41]	2.304	2.110	2.021	1.844	1.780	1.864	1.759	1.764	1.775	1.750	0.605
[6]	2.308	2.115	2.017	1.849	1.770	1.859	1.770	1.767	1.782	1.774	0.585
[42]	2.308	2.115	2.017	1.849	1.770	1.859	1.770	1.767	1.782	1.774	0.585

ALANES

	Experimental values (Å)	$S_{\rm IC}$
Reference*	Mean Al-Al distance	
[43]	2.686	0.001
[4]	2.701	0.157
[4]	2.702	0.146
[44]	2.684	0.019
[44]	2.685	0.024

* Same reference for a different row refers to a different crystal/counterion(s) (see reference).

Figure S1. Topological analysis of the electron density in $Z_{12}H_{12}^{2-}$ and $r-X_2Z_{10}H_{12}$ clusters with $X = \{C, Si\}$ and $Z = \{B, Al\}$. (a) $B_{12}H_{12}^{2-}$, (b) *ortho*- $C_2B_{10}H_{12}$, (c) *meta*- $C_2B_{10}H_{12}$, (d) *para*- $C_2B_{10}H_{12}$, (e) *ortho*- $Si_2B_{10}H_{12}$, (f) *meta*- $Si_2B_{10}H_{12}$, (g) *para*- $Si_2B_{10}H_{12}$, (h) $Al_{12}H_{12}^{2-}$, (i) *ortho*- $C_2Al_{10}H_{12}$, (j) *meta*- $C_2Al_{10}H_{12}$, (k) *para*- $C_2Al_{10}H_{12}$, (l) *ortho*- $Si_2Al_{10}H_{12}$, (m) *meta*- $Si_2Al_{10}H_{12}$, (n) *para*- $Si_2Al_{10}H_{12}$. Computations with the B3LYP/6-311+G(d,p) model. All geometries correspond to energy minima.

(i)

References

- ¹ A. E. Reed, R. . Weinstock, and F. Weinhold, J. Chem. Phys. 83, 735-746 (1985)
- ² S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 249, 1693 (2005)
- I. Tiritiris, T. Schleid, Z. Anorg. Allg. Chem. 629, 1390 (2003)
- ⁴ C. Klemp, M. Bruns, J. Gauss, U. Haussermann, G. Stosser, L. van Wullen, M. Jansen, H. Schnockel, *J. Am. Chem. Soc.* **123**, 9099 (2001) ⁵ Y. Nie, H. Pritzkow, W. Siebert, *Eur.J.Inorg.Chem.* 2425 (2004)

⁶ D. Seyferth, K. Büchner, W. S. Rees, Jr., W. M. Davis, Angew. Chem. Int. Ed. Engl. 29, 918 (1990)

- ⁷ A. S. Batsanov, R. C. B. Copley, M. G. Davidson, M. A. Fox, T. G. Hibbert, J. A. K. Howard, K. Wade, J. Cluster Sci. 17, 119 (2006)
- ⁸ E. S. Shubina, I. A. Tikhonova, E. V. Bakhmutova, F. M. Dolgushin, M. Yu. Antipin, V. I. Bakhmutov,
- I. B. Sivaev, L. N. Teplitskaya, I. T. Chizhevsky, I. V. Pisareva, V. I. Bregadze, L. M. Epstein, V. B. Shur, Chem. - Eur. J. 7, 3783 (2001)
- ⁹ Y. Zhang, Z. Ca, Z. Chen, K. Pan, G. Zhang, Z. Zhang, Chin. J. Struct. Chem. 2, 201 (1983)
- ¹⁰ L. Chen, K. Pan, L. Zhang, P. Hu, Chin. J. Struct. Chem. 3, 5 (1984)
- ¹¹ L. Chen, K. Pan, L. Zhang, P. Hu, Chin. J. Struct. Chem. 3,1 (1984)
- ¹² L. Chen, K. Pan, X. Chen, L. Zhang, Chin. J. Struct. Chem. 3, 125 (1984)
- ¹³ I. Tiritiris, T. Schleid, Z. Anorg. Allg. Chem. 630, 541 (2004)
- ¹⁴ Z. Fu, Z. Cai, Z. Pan, L. Zhang, Chin. J. Struct. Chem. 3, 231 (1984)
- ¹⁵ G. Shoham, D. Schomburg, W. N. Lipscomb, Cryst. Struct. Commun. 9, 429 (1980)
- ¹⁶ I. Yu. Kuznetsov, K. A. Solntsev, N. T. Kuznetsov, Yu. N. Mikhailov, A. M. Orlova, Z. M. Alikhanova, A. V. Sergeev, Russ. Coord. Chem. 12, 1387 (1986)
- ¹⁷ K. A. Solntsev, N. T. Kuznetsov, V. K. Trunov, O. G. Karpinskii, G. S. Klimchuk, S. I. Uspenskaya, Yu. V. Oboznenko, Russ. J. Inorg. Chem. 22, 3200 (1977)
- ¹⁸ I. Tiritiris, J. Weidlein, T. Schleid, Z. Naturforsch. B: Chem. Sci. 60, 627 (2005)
- ¹⁹ J. P. White III, H. Deng, E. P. Boyd, J. Gallucci, S. G. Shore, *Inorg. Chem.* 33, 1685 (1994)
- ²⁰ V. L. Lagun, K. A. Solntsev, S. B. Katser, A. M. Orlova, N. T. Kuznetsov, Russ. Coord. Chem. 20, 504 (1994)
- ²¹ P. J. Dyson, A. F. Hill, A. G. Hulkes, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed. 37,1430 (1998) ²² A. M. Orlova, V. N. Mustyatsa, L. V. Goeva, S. B. Katser, V. L. Lagun, K. A. Solntsev, N. T.
- Kuznetsov, Russ. J. Inorg. Chem. 41,1599 (1996)
- ²³ T. Koch, W. Preetz, Z. Naturforsch. B: Chem. Sci. 52, 935 (1997)
- ²⁴ T. Pevmann, C. B. Knobler, M. F. Hawthorne, *Inorg. Chem.* 37, 1544 (1998)
- ²⁵ K. Hofmann, B. Albert, Z. Anorg. Allg. Chem. 627, 1055 (2001)
- ²⁶ S. B. Katser, E. A. Malinina, V. N. Mustyatsa, K. A. Solntsev, N. T. Kuznetsov, Russ. Coord. Chem. 18, 387 (1992)
- ²⁷ V. L. Lagun, A. M. Orlova, S. B. Katser, K. A. Solntsev, N. T. Kuznetsov, Russ. Coord. Chem. 20, 431 (1994)
- ²⁸ T. Peymann, C. B. Knobler, S. I. Khan, M. F. Hawthorne, *Inorg. Chem.* 40, 1291 (2001)
- ²⁹ C. L. Raston, G. W. V. Cave, Chem. Eur. J. 10, 279 (2004)
- ³⁰ M. J. Hardie, C. L. Raston, Cryst. Eng. Comm. 3,162 (2001)
- ³¹ M. Makha, C. L. Raston, A. N. Sobolev, L. J. Barbour, P. Turner, Cryst. Eng. Comm. 8, 306 (2006)
- ³² M. J. Hardie, P. D. Godfrey, C. L. Raston, *Chem. Eur. J.* 5, 1828 (1999)
- ³³ M. J. Hardie, C. L. Raston, Eur. J. Inorg. Chem. 195 (1999)
- ³⁴ T. E. Clark, M. Makha, C. L. Raston, A. N. Sobolev, *Dalton Trans.* 5449 (2006)
- ³⁵ P. C. Andrews, J. L. Atwood, L. J. Barbour, P. J. Nichols, C. L. Raston Chem. Eur. J. 4, 1384 (1998)
- ³⁶ M. Schultz, C. J. Burns, D. J. Schwartz, R. A. Andersen, Organometallics 19,781 (2000)
- ³⁷ M. G. Davidson, T. G. Hibbert, J. A. K. Howard, A. Mackinnon, K. Wade, Chem. Commun. 2285 (1996)
- ³⁸ R. J. Blanch, M. Williams, G. D. Fallon, M. G. Gardiner, R. Kaddour, C. L. Raston, Angew. Chem. Int. Ed. 36, 504 (1997)
- ³⁹ M. J. Hardie, C. L. Raston, B. Wells, Chem. Eur. J. 6, 3293 (2000)

⁴⁰ L. Wesemann, Y. Ramjoie, M. Trinkaus, B. Ganter, Z. Anorg. Allg. Chem. 624, 1573 (1998)
⁴¹ L. Wesemann, M. Trinkaus, U. Englert, J. Muller, Organometallics 18, 4654 (1999)
⁴² D. Seyferth, K. D. Buchner, W. S. Rees Jr, L. Wesemann, W. M. Davis, S. S. Bukalov, L. A. Leites, H. Bock, B. Solouki, J. Am. Chem. Soc. 115, 3586 (1993)
⁴³ W. Hiller, K.-W. Klinkhammer, W. Uhl, J. Wagner, Angew. Chem. Int. Ed. 30, 179 (1991)
⁴⁴ J. Wellet, B. Dewert, H. Schwachel, Angew. Chem. Int. Ed. 30, 179 (1991)

⁴⁴ J. Vollet, R. Burgert, H. Schnockel, Angew. Chem. Int. Ed. 44, 6956 (2005)