Supplementary Material for PCCP
This journal is © The Owner Societies 2010

Supporting information for manuscript

Natural abundance high field ^{43}Ca solid state NMR in cement science

by Igor L. Moudrakovski, Rouhollah Alizadeh and James J. Beaudoin
Supplementary Material for PCCP
This journal is © The Owner Societies 2010

Figure S1: Correlation between calculated isotropic shieldings and experimental 43Ca isotropic chemical shifts in diamagnetic compounds of calcium. All experimental data except for CaCl$_2$ were obtained at 21.1T. The chemical for CaCl$_2$ is taken from Ref. 29 and corrected for the difference in the references.
Table S1. CASTEP calculated ^{43}Ca NMR parameters in triclinic C$_3$S.

<table>
<thead>
<tr>
<th>Ca site</th>
<th>σ, ppm</th>
<th>C_q, MHz</th>
<th>η</th>
<th>$\delta^{\text{Calc.}}$, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>969.14</td>
<td>7.2</td>
<td>0.39</td>
<td>134.9</td>
</tr>
<tr>
<td>2</td>
<td>1039.49</td>
<td>5.3</td>
<td>0.23</td>
<td>75.6</td>
</tr>
<tr>
<td>3</td>
<td>1019.5</td>
<td>-3.9</td>
<td>0.75</td>
<td>92.5</td>
</tr>
<tr>
<td>4</td>
<td>1005.13</td>
<td>3.8</td>
<td>0.59</td>
<td>104.6</td>
</tr>
<tr>
<td>5</td>
<td>1028.49</td>
<td>4.5</td>
<td>0.71</td>
<td>84.9</td>
</tr>
<tr>
<td>6</td>
<td>1028.47</td>
<td>-3.4</td>
<td>0.92</td>
<td>84.9</td>
</tr>
<tr>
<td>7</td>
<td>1017.15</td>
<td>2.2</td>
<td>0.82</td>
<td>94.5</td>
</tr>
<tr>
<td>8</td>
<td>1016.3</td>
<td>-2.6</td>
<td>0.42</td>
<td>95.2</td>
</tr>
<tr>
<td>9</td>
<td>1019.54</td>
<td>-3.8</td>
<td>0.89</td>
<td>92.4</td>
</tr>
<tr>
<td>10</td>
<td>1031.41</td>
<td>-3.1</td>
<td>0.10</td>
<td>82.4</td>
</tr>
<tr>
<td>11</td>
<td>1018.8</td>
<td>-3.3</td>
<td>0.29</td>
<td>93.1</td>
</tr>
<tr>
<td>12</td>
<td>1018.04</td>
<td>-2.5</td>
<td>0.95</td>
<td>93.7</td>
</tr>
<tr>
<td>13</td>
<td>1042.42</td>
<td>-3.9</td>
<td>0.51</td>
<td>73.1</td>
</tr>
<tr>
<td>14</td>
<td>1033.41</td>
<td>4.3</td>
<td>0.84</td>
<td>80.7</td>
</tr>
<tr>
<td>15</td>
<td>1023.43</td>
<td>-2.1</td>
<td>0.21</td>
<td>89.2</td>
</tr>
<tr>
<td>16</td>
<td>982.45</td>
<td>-31.9</td>
<td>0.02</td>
<td>123.7</td>
</tr>
<tr>
<td>17</td>
<td>1040.84</td>
<td>-3.1</td>
<td>0.61</td>
<td>74.5</td>
</tr>
<tr>
<td>18</td>
<td>1017.29</td>
<td>-2.2</td>
<td>0.49</td>
<td>94.3</td>
</tr>
<tr>
<td>19</td>
<td>1013.39</td>
<td>1.2</td>
<td>0.72</td>
<td>97.6</td>
</tr>
<tr>
<td>20</td>
<td>1027.19</td>
<td>2.7</td>
<td>0.22</td>
<td>86.0</td>
</tr>
<tr>
<td>21</td>
<td>963.78</td>
<td>-2.9</td>
<td>0.35</td>
<td>139.5</td>
</tr>
<tr>
<td>22</td>
<td>1075.6</td>
<td>-2.4</td>
<td>0.23</td>
<td>45.2</td>
</tr>
<tr>
<td>23</td>
<td>955.56</td>
<td>-3.4</td>
<td>0.17</td>
<td>146.4</td>
</tr>
<tr>
<td>24</td>
<td>1009.16</td>
<td>-1.9</td>
<td>0.19</td>
<td>101.2</td>
</tr>
<tr>
<td>25</td>
<td>1010.32</td>
<td>-3.5</td>
<td>0.63</td>
<td>100.2</td>
</tr>
<tr>
<td>26</td>
<td>1020.14</td>
<td>4.6</td>
<td>0.90</td>
<td>91.9</td>
</tr>
<tr>
<td>27</td>
<td>1019.15</td>
<td>3.4</td>
<td>0.67</td>
<td>92.8</td>
</tr>
<tr>
<td>28</td>
<td>1004.67</td>
<td>4.6</td>
<td>0.85</td>
<td>105.0</td>
</tr>
<tr>
<td>29</td>
<td>978.88</td>
<td>-5.1</td>
<td>0.69</td>
<td>126.7</td>
</tr>
</tbody>
</table>

1 A structure from Ref. 46 was used in calculations. Sites numbering follows the original reference.
2 $\delta^{\text{Calc.}}$ are converted from the absolute shielding constants s using an empirical relationship $\sigma = 1129.1 - 1.1857*\delta$ (see Fig. S1).