Influence of phosphate anion adsorption on the kinetics of oxygen reduction on low index Pt(hkl) single crystals

Qinggang Hea, Xiaofang Yangb, Wei Chenc,d, Sanjeev Mukerjeea,, Bruce Koelb, and Shaowei Chenc,*

a Department of Chemistry \& Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115 USA. Email: s.mukerjee@neu.edu (S. M.)

b Department of Chemistry and Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 USA

c Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA 95064 USA. Email: schen@chemistry.ucsc.edu (S.W.C.)

Present address: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

In-situ X-ray absorption spectroscopy. In situ X-ray absorption spectroscopic data were collected on a Pt/C (30\%, E-TEK) sample as a function of electrode potentials (+0.01 V, +0.24 V, +0.54 V, +0.84 V, and +1.04 V) in 0.1 M HClO\textsubscript{4} and 0.1 M HClO\textsubscript{4} + 100 mM phosphoric acid. All data were processed with standard procedures using the IFEFFIT suite (v.1.2.9) \cite{1}. Briefly, the reference foils corresponding to each scan were calibrated to the standard Pt L\textsubscript{3} edge energy and then carefully aligned to a selected standard at +0.54 V. The energy shifts were then automatically applied to all the respective sample scans. Difference spectra were obtained to isolate the effect of adsorbate by using the following equation,

\[
\Delta \mu(x,y) = \mu(y \text{ V}, 0.1 \text{ M HClO}_4 + x \text{ M H}_3\text{PO}_4) - \mu(+0.54 \text{ V}, 0.1 \text{ M HClO}_4)
\]

where \(\mu \) is the X-ray absorption coefficient at the electrode potential of \(y \text{ V} \) and at \(\text{H}_3\text{PO}_4 \) concentration of \(x \text{ M} \). In a series of previous studies using the XANES-based \(\Delta \mu \) technique \cite{2-4}, Pt catalyst surfaces were found to be the 'cleanest' and relatively free of any adsorbates at around
+0.5 V in acid media; therefore the data at +0.54 V in 0.1 M HClO₄ were used as the reference to generate the difference spectra in the present study.

Figure S1 shows the ∆µ curves for the Pt/C (E-TEK) catalyst samples in (a) 0.1 M HClO₄ and (b) 0.1 M HClO₄ + 100 mM H₃PO₄. The signatures correspond very well to H/Pt adsorbed in 3-fold sites [3], and the magnitude of the H/Pt signature decreased with increasing electrode potential. Note that the absorption spectrum at +0.54 V in 0.1 M HClO₄ was used as the reference spectrum in the calculation of ∆µ. In 0.1 M HClO₄ + 100 mM H₃PO₄, the ∆µ curve at +0.54 V exhibits a small negative feature at ca. 0 eV followed by a small, broad positive feature of roughly the same magnitude at ca. 5 eV. Considering that oxygen did not bond to the Pt surface at such low potentials and that the magnitude of the positive feature was much smaller than for a strongly bonded 3-fold O/Pt, it is likely that this is due to the more weakly bonded $H_2PO_4^-$/Pt with the

![Atop site](image1.png) ![3-fold site](image2.png)

Figure S2. Theoretical simulations of ∆µ signatures of $H_2PO_4^-$ adsorption on Pt by FEFF 8.0
oxygen occupying the 3-fold hollow sites on the Pt surface. This is very similar to the line shape found previously for 3-fold Cl/Pt [5]. As the potential was increased to +0.84 V and +1.04 V, the line shape approaches the theoretical 3-fold mode depicted in Figure S2, along with a negative peak close to 0 eV.

Additional Electrochemical Data

![Figure S3](image_url)

Figure S3. RDE voltammograms for the Pt(100), Pt(110, Pt(111), and PtSn(111) electrode in O₂ saturated 0.1 M HClO₄ at varied rotation rates. The current density was calculated by normalizing the voltammetric current to the geometrical area of the electrode. DC ramp 20 mV/s.
Figure 4S. RDE voltammograms of ORR at (left) Pt(100) and (right) Pt(110) electrodes in oxygen-saturated 0.1 M HClO4 and 0.1M HClO4 + 50mM H3PO4. Rotation rate 900 RPM. DC potential ramp 20 mV/s.
References