Supporting Information for

Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory

Brad Slepetz, Istvan Laszlo, Yury Gogotsi, David Hyde-Volpe, and Miklos Kertesz

Chemistry Department, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057-1227

\[V_6 \]

\[V_{10} \]

\(^a \) Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, H-1521, Hungary.

\(^b \) Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA.

\(^* \) Corresponding author. E-mail: Kertesz@georgetown.edu
Figure S1. Unrelaxed structures of selected vacancy clusters V_n ($n=6, 10, 14, 19, 26, 30, 35, 39, 45, 50, 54$). Not that these structures turned out to be the most stable for the given n after geometry relaxation.
Figure S2. Relaxed structures of selected vacancy clusters V_n ($n=6, 14, 19, 26, 30, 39, 45, 50, 54$). These structures are the most stable for the given n values. Larger blue atoms indicate those that are adjacent to the pore left by the vacancy cluster and undergo the largest rearrangement upon relaxation. As n increases, regions of local graphitization become energetically favorable. For each V_n different views are provided to aid the visualization.
$g(r)$ vs. $r / \text{Å}$

V_6

V_{14}
Figure S3. Calculated pair correlation function, $g(r)$ for V_n in the $1.3 \, \text{Å} < r < 2.4 \, \text{Å}$ range. ($n=6, 14, 19, 26, 30, 39, 45, 50, 54$).
Figure S4. Calculated bond angle distribution function, P, for V_n in the $90 < \Theta < 130$ range. No angles are observed outside the presented range. ($n=6, 14, 19, 26, 30, 39, 45, 50, 54$).