Complementary Supporting Information's

Electron Transfer Reaction of Light Harvesting Zinc Naphthalocyanine–Subphthalocyanine Self-Assembled Dyad: Spectroscopic, Electrochemical, Computational, and Photochemical Studies

Mohamed E. El-Khouly

Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, JAPAN.
E-mail: melkhouly@chem.eng.osaka-u.ac.jp
CONTENTS

Fig. S1 Absorption profiles of ZnNc in the absence (black) and presence (red) of [(Ru(bpy)₃)³⁺] in dichloromethane.

Fig. S2 Spectral changes observed during the first oxidation of ZnNc (3.5 μM) in o-dichlorobenzene, 0.1M (TBA)ClO₄. Potential applied = 0.8 V vs. Ag/AgNO₃.

Fig. S3 Nanosecond transient spectra of SubPc(py):ZnNc dyad in o-dichlorobenzene; λₑₓ = 430 nm.

Fig. S4 Nanosecond transient spectra of ZnNc in o-dichlorobenzene; λₑₓ = 430 nm.

Fig. S5 Nanosecond transient spectra of SubPc(py) in o-dichlorobenzene; λₑₓ = 550 nm.

Fig. S6 Decay-profiles of SubPc(py)-³ZnNc* at 600 nm upon excitation of the ZnNc (λₑₓ = 430 nm) and SubPc(py) (λₑₓ = 500 nm).
Fig. S1 Absorption profiles of ZnNc in the absence (black) and presence (red) of [(Ru(bpy)₃)²⁺] in dichloromethane.
Fig. S2 Spectral changes observed during the first oxidation of ZnNc (3.5 μM) in o-dichlorobenzene, 0.1M (TBA)ClO₄. Potential applied 0.8 V vs. Ag/AgNO₃. (Ref. ChemPhysChem. 2003, 4, 474).

Fig. S3 Nanosecond transient spectra of SubPc(py):ZnNc dyad in o-dichlorobenzene; λₑᵥ = 430 nm.
Fig. S4 Nanosecond transient spectra of ZnNc in o-dichlorobenzene; $\lambda_{ex} = 430$ nm.

Fig. S5 Nanosecond transient spectra of SubPc(py) in o-dichlorobenzene; $\lambda_{ex} = 550$ nm.
Fig. S6 Decay-profiles of SubPc(py)-3ZnNc* at 600 nm upon excitation of the ZnNc ($\lambda_{\text{ex}} = 430$ nm) and SubPc(py) ($\lambda_{\text{ex}} = 500$ nm).