Supporting information:

The lateral diffusion constant \((D_L) \) of the fluorescent probe molecule have been calculated by the following procedure:

By using eq (i) we have calculated \(\tau_m \) value;
\[
\tau_m = \frac{2 \pi \eta r_h^2}{K T} \quad \text{(I)}
\]
where
\(\eta \) = viscosity of the medium (water), \(r_h \) = hydrodynamic radius of the SUV, \(K \) = Boltzmann constant, \(T \) = absolute temperature, \(\tau_1 \) and \(\tau_2 \) are fast and slow component of anisotropy decay.

Again, by using the value of \(\tau_m \), we have obtained the \(\tau_D \) value with the help of eq. (ii);
\[
\frac{1}{\tau_D} = \frac{1}{\tau_2} + \frac{1}{\tau_m} \quad \text{(ii)}
\]
where \(\tau_m \) = time constant for overall rotation of the vesicles and \(\tau_D \) = lateral diffusion of the probe.

Lastly we have obtained the \(D_L \) value by using the \(\tau_D \) and \(r_h \) values with the help of eq. (iii);
\[
D_L = \frac{r_h^2}{6 \tau_D} \quad \text{(iii)}
\]