Trajectory-based solution of the nonadiabatic quantum dynamics equations: an on-the-fly approach for molecular dynamics simulations

Basile F.E. Curchod, Ivano Tavernelli, Ursula Rothlisberger
The figure shows three subsequent snapshots of a wavepacket (probability density) colliding with a 0.36 a.u. high Eckart potential centered at x=7 a.u.. The simulation was started with a Gaussian wavepacket centered at x=0 a.u. (kinetic energy 0.294 a.u. and initial momentum pointing to the right). Quantum trajectories can reproduce the exact dynamics of the wavepacket while TSH gives a larger wavepacket reflection due to the lack of tunneling.