Towards large-scale, fully ab initio calculations of ionic liquids

Ekaterina I. Izgorodina

School of Chemistry, Monash University, Wellington Rd, Clayton 3800 VIC, Australia

SUPPLEMENTARY INFORMATION
Figure S1. Walden plot for ionic liquids studied in ref. 11. Ionic liquids were grouped with respect to anions.
Figure S2. Born-Fajans-Haber cycle for calculating $\Delta_{\text{fus}} G^T$.

\[[A^+]_{\text{g}} + [X]_{\text{g}} \]

\[+ \Delta_{\text{lat}} G^T \]

\[[A][X]_{(s)} \]

\[\Delta_{\text{fus}} G^T \]

\[[A][X]_{(l)} \]

\[\Delta_{\text{solv}} G^T (A^+) \]

\[\Delta_{\text{solv}} G^T (X^-) \]
Figure S3. Correlation between the proton affinity and melting point for C$_2$ mim-based ionic liquids incorporating anions: NTf$_2$, N(CN)$_2$, Cl, NO$_3$, CF$_3$SO$_3$ and (SO$_2$CH$_3$)N(SO$_2$CF$_3$).