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A.1 Functional derivative of G[c2]

The Gibbs energy G is implicitly time- and space-dependent, i.e. G[c2(~r2, t)]. Therefore, we have
to use a functional derivative instead of a classical partial derivative to compute the derivative of
G[c2(~r2, t)] with respect to c2(~r2, t).

The functional derivative δF [ρ(r)]
δρ(r)

is defined such that for all test functions ψ(r)

<
δF [ρ(r)]

δρ(r)
, ψ(r) >=

d

dε
F [ρ(r) + εψ(r)]

∣∣∣∣∣
ε=0

. (1)

For the Gibbs energy formulation (equation (8) of the paper)

G[c2(~r2)] =

∫
V2

µF · c2 +RTc2 ln c2 + µE · (1−c2) +RT · (1−c2) ln(1−c2) + α · c2(1−c2)

+ν2F (c2 − cA) · ΦdV

(2)

the derivative with respect to the ion concentration is

<
δG[c2(~r2)]

δc2(~r2)
, ψ(~r2) >=

d

dε

∫
V2

µF · (c2 + εψ) +RT (c2 + εψ) ln(c2 + εψ) + µE · (1− (c2 + εψ))

+RT · (1− (c2 + εψ)) ln(1− (c2 + εψ)) + α · (c2 + εψ)(1− (c2 + εψ))

+ ν2F ((c2 + εψ)− cA) · ΦdV

∣∣∣∣∣
ε=0

(3)

=

∫
V2

µF · ψ + ψRT ln(c2 + εψ) +RT (c2 + εψ)
ψ

(c2 + εψ)
− µE · ψ − ψRT · ln(1− (c2 + εψ))

−RT · (1− (c2 + εψ))
ψ

(1− (c2 + εψ))
+ α · ψ(1− 2(c2 + εψ)) + ν2Fψ · ΦdV

∣∣∣
ε=0

(4)

=

∫
V2

µF · ψ + ψRT ln c2 − µE · ψ − ψRT · ln(1− c2) + α · ψ(1− 2c2) + ν2Fψ · ΦdV (5)

=

∫
V2

(µF +RT ln c2 − µE −RT · ln(1− c2) + α · (1− 2c2) + ν2F · Φ) · ψ dV (6)

=< µF +RT ln c2 − µE −RT · ln(1− c2) + α · (1− 2c2) + ν2F · Φ︸ ︷︷ ︸
=
δG[c2(~r2)]
δc2(~r2)

, ψ(~r2) >
(7)
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Thus the chemical potential is

⇒ µ2 = µF +RT ln c2 − µE −RT · ln(1− c2) + α · (1− 2c2) + ν2F · Φ, (8)

which is used in equation (10) of the paper to derive the flux for ions in a solid electrolyte.

A.2 Non-dimensional System of Equations

For the purpose of numerical simulations and model analysis it is convenient to introduce non-
dimensional variables. Further, we assume that our battery model is isotropic in y and z direction.
This reduces the model to a 1-dimensional system and the diffusion tensor Di to a scalar Di. The
non-dimensional variables are

ϕ =
F

RT
Φ, τ =

1

tS
· t ∈ [0, 1] and ξi =

xi
Li
∈ [0, 1],

with the overall simulation time tS. Unless noted otherwise, all calculations were performed with the
following setting of parameters:

L1 = 100 nm CI = 80µFcm−2 T = 298 K ∆G‡f,A = 1.15 eV ∆G‡f,C = 1.15 eV

L2 = 100 nm ΦA = 2 V εE = 50 ∆G‡b,A = 3 eV ∆G‡b,C = 3 eV
L3 = 100 nm ΦC = −2 V εI = 10 β = 0.5

Note that we still use ∇ as derivative operator, which for the 1-D case is ∇ = ∂
∂ξi

. This leads to

the non-dimensional system of equations:

Anode

L2
1

D1tS

∂c1(ξ1, τ)

∂τ
= ∇ · (∇c1(ξ1, τ)) (9)

Solid Electrolyte

L2
2

D2tS

∂c2(ξ2, τ)

∂τ
= ∇·

((
1

1−c2
− 2α

RT
c2

)
∇c2

+ c2(ξ2, τ)∇ϕ(ξ2, τ)

) (10)

∇2ϕ(ξ2, τ) =
L2
2F

2ν2
ε0εERT

(c2(ξ2, τ)− cA) (11)

Cathode

L2
3

D3tS

∂c3(ξ3, τ)

∂τ
= ∇ · (∇c3(ξ3, τ)) (12)
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A.3 Comparison between classical PNP and the newly derived Equations

A comparison of the spatial ion and potential distribution between the classical PNP System (equa-
tion (18) of the paper) and the more rigorous formulation presented in this work (equation (14) of
the paper) is given in Figure 1.
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(a) Classical PNP System.
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(b) Numerical solution of system of equations (35)–(36) given in the
paper.

Fig. 1 Comparison of the classical PNP system and the modified PNP system.

The simulation of the classical equations (Figure 1(a)) shows a mole fraction of cations greater
than 1 near the electrode surface, which is caused by the vast amount of mobile ions. The clas-
sical equations describe ion hopping as randomly allowed Poisson processes, and blocked sites are
not considered. Hence, the probability of a jump between adjacent sites is just proportional to the
energy barrier between the two sites and the thermal oscillation. However, in the case of the elec-
trode/electrolyte interface, in which an electrostatic potential forces ions to be collected or reduced
near the surface, this simplification might not be valid anymore.

The jump probability is also dependent on the probability that an adjacent site is empty. Since
solid electrolytes are rather concentrated solutions, the amount of mobile ions (n2) with respect to
the amount of sites (ñ2 + m̃2 = ν2) is large compared to classical dilute liquid electrolyte systems.
In this case, the probability of an empty site must be taken into account explicitly.1

In the case of a Nernst–Planck flux, this effect is not incorporated, which leads to the overestimation
of ion concentration near the surface.
The derived generalization of the PNP system accounts for the finite amount of vacancies, resulting
in a realistic behaviour of the ion concentration in the space charge region.

1 B. Horrocks and R. Armstrong, J. Phys. Chem. B, 1999, 103, 11332–11338.
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