Supplementary information
(May 30, 2011)

Unique interplay between electronic states and dihedral angles
for the molecular rotor diphenyldiacetylene

Peter W. Thulstrup,*a Søren V. Hoffmann,b Bjarke K. V. Hansen,c and Jens Spanget-Larsen*c

aDepartment of Basic Science and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
bInstitute for Storage Ring Facilities, ISA, University of Aarhus, Ny Munkegade, Bldg. 1520, DK-8000 Aarhus C, Denmark
cDepartment of Science, Systems and Models, Roskilde University, P.O.Box 260, DK-4000 Roskilde, Denmark

*Corresponding authors: E-mail <pwt@life.ku.dk> (P. W. Thulstrup), <spanget@ruc.dk> (J. Spanget-Larsen)

S 2 Calculated electronic transitions for planar DPDA: $\Phi = 0^\circ (D_{2h})$
S 3 Calculated electronic transitions for twisted DPDA: $\Phi = 45^\circ (D_2)$
S 4 Calculated electronic transisitions for twisted DPDA: $\Phi = 90^\circ (D_{2d})$
S 5 Edited and annotated GAUSSIAN03 printout for planar DPDA: $\Phi = 0^\circ (D_{2h})$
S 12 Edited and annotated GAUSSIAN03 printout for twisted DPDA: $\Phi = 45^\circ (D_2)$
S 20 Edited and annotated GAUSSIAN03 printout for twisted DPDA: $\Phi = 90^\circ (D_{2d})$
S 28 MO energies and diagrams for planar and twisted DPDA
S 31 Frontier MO energies as a function of dihedral angle Φ
S 32 Edited and annotated GAUSSIAN03 printout for DPDA with non-linear diyne axis, in-plane distortion
S 37 Edited and annotated GAUSSIAN03 printout for DPDA with non-linear diyne axis, out-of-plane distortion
S 42 GAUSSIAN03 reference
<table>
<thead>
<tr>
<th>Term</th>
<th>(\tilde{\nu}^a)</th>
<th>(j^b)</th>
<th>Leading configurations c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1^1B_{1u})</td>
<td>29.7 0.93</td>
<td>79% (1,-1), 13% (2,-3)</td>
</tr>
<tr>
<td>2</td>
<td>(1^1A_g)</td>
<td>31.2 0</td>
<td>92% (2,-1)</td>
</tr>
<tr>
<td>3</td>
<td>(2^1A_u)</td>
<td>34.0 0</td>
<td>93% (1,-3)</td>
</tr>
<tr>
<td>4</td>
<td>(1^1B_{3g})</td>
<td>38.0 0</td>
<td>51% (1,-4), 42% (4,-1)</td>
</tr>
<tr>
<td>5</td>
<td>(1^1B_{2a})</td>
<td>38.1 3·10^{-4}</td>
<td>51% (1,-5), 43% (3,-1)</td>
</tr>
<tr>
<td>6</td>
<td>(2^1A_g)</td>
<td>40.1 0</td>
<td>63% (1,-2), 37% (5,-1)</td>
</tr>
<tr>
<td>7</td>
<td>(2^1B_{3g})</td>
<td>42.9 0</td>
<td>47% (4,-1), 41% (1,-4)</td>
</tr>
<tr>
<td>8</td>
<td>(2^1B_{2a})</td>
<td>42.9 0.12</td>
<td>46% (3,-1), 42% (1,-5)</td>
</tr>
<tr>
<td>9</td>
<td>(3^1A_g)</td>
<td>43.7 0</td>
<td>49% (5,-1), 25% (1,-2)</td>
</tr>
<tr>
<td>10</td>
<td>(1^1B_{1g})</td>
<td>44.4 0</td>
<td>93% (2,-2)</td>
</tr>
<tr>
<td>11</td>
<td>(1^1B_{2g})</td>
<td>45.4 0</td>
<td>91% (1,-6)</td>
</tr>
<tr>
<td>12</td>
<td>(2^1B_{1u})</td>
<td>45.8 1.30</td>
<td>46% (2,-3), 28% (6,-1)</td>
</tr>
<tr>
<td>13</td>
<td>(2^1B_{2g})</td>
<td>46.8 0</td>
<td>99% (2,-4)</td>
</tr>
<tr>
<td>14</td>
<td>(1^1B_{3a})</td>
<td>46.8 4·10^{-3}</td>
<td>59% (2,-5), 38% (1,-7)</td>
</tr>
<tr>
<td>15</td>
<td>(2^1B_{3a})</td>
<td>46.9 1·10^{-3}</td>
<td>57% (1,-7), 39% (2,-5)</td>
</tr>
<tr>
<td>16</td>
<td>(2^1B_{1g})</td>
<td>48.1 0</td>
<td>94% (5,-3)</td>
</tr>
<tr>
<td>17</td>
<td>(3^1B_{2g})</td>
<td>50.0 0</td>
<td>88% (1,-8)</td>
</tr>
<tr>
<td>18</td>
<td>(3^1B_{2a})</td>
<td>50.1 1·10^{-3}</td>
<td>52% (4,-2), 36% (5,-4)</td>
</tr>
<tr>
<td>19</td>
<td>(3^1B_{3g})</td>
<td>50.1 0</td>
<td>52% (3,-2), 35% (5,-5)</td>
</tr>
<tr>
<td>20</td>
<td>(3^1B_{3a})</td>
<td>50.6 0</td>
<td>99% (3,-3)</td>
</tr>
<tr>
<td>21</td>
<td>(4^1B_{2g})</td>
<td>50.6 0</td>
<td>99% (4,-3)</td>
</tr>
<tr>
<td>22</td>
<td>(3^1A_u)</td>
<td>50.6 0</td>
<td>95% (1,-9)</td>
</tr>
<tr>
<td>23</td>
<td>(3^1B_{1u})</td>
<td>50.7 0.18</td>
<td>51% (6,-1), 32% (1,-12)</td>
</tr>
<tr>
<td>24</td>
<td>(3^1B_{1g})</td>
<td>51.6 0</td>
<td>97% (1,-10)</td>
</tr>
<tr>
<td>25</td>
<td>(4^1B_{1u})</td>
<td>51.7 0.40</td>
<td>45% (5,-2), 22% (4,-4)</td>
</tr>
<tr>
<td>26</td>
<td>(4^1B_{3g})</td>
<td>52.5 0</td>
<td>78% (2,-6), 17% (2,-8)</td>
</tr>
<tr>
<td>27</td>
<td>(4^1B_{1g})</td>
<td>52.5 0</td>
<td>89% (7,-1)</td>
</tr>
<tr>
<td>28</td>
<td>(4^1B_{3a})</td>
<td>53.1 4·10^{-3}</td>
<td>93% (1,-11), 99% (1,-12)</td>
</tr>
<tr>
<td>29</td>
<td>(5^1B_{1u})</td>
<td>54.0 1.26</td>
<td>36% (5,-2), 29% (1,-12)</td>
</tr>
<tr>
<td>30</td>
<td>(4^1A_g)</td>
<td>54.3 0</td>
<td>35% (3,-4), 26% (4,-5)</td>
</tr>
<tr>
<td>31</td>
<td>(6^1B_{1u})</td>
<td>54.6 6·10^{-4}</td>
<td>51% (3,-5), 49% (4,-4)</td>
</tr>
<tr>
<td>32</td>
<td>(5^1A_g)</td>
<td>54.6 0</td>
<td>54% (4,-5), 46% (3,-4)</td>
</tr>
<tr>
<td>33</td>
<td>(4^1B_{2a})</td>
<td>54.9 0.06</td>
<td>74% (2,-7), 11% (5,-4)</td>
</tr>
<tr>
<td>34</td>
<td>(4^1A_u)</td>
<td>54.9 0</td>
<td>52% (4,-6), 42% (3,-7)</td>
</tr>
<tr>
<td>35</td>
<td>(5^1B_{1g})</td>
<td>55.0 0</td>
<td>54% (3,-6), 43% (4,-7)</td>
</tr>
<tr>
<td>36</td>
<td>(5^1B_{3g})</td>
<td>55.4 0</td>
<td>51% (5,-5), 31% (3,-2)</td>
</tr>
<tr>
<td>37</td>
<td>(5^1B_{2a})</td>
<td>55.5 0.37</td>
<td>40% (5,-4), 25% (4,-2)</td>
</tr>
<tr>
<td>38</td>
<td>(5^1A_u)</td>
<td>55.6 0</td>
<td>87% (1,-13)</td>
</tr>
<tr>
<td>39</td>
<td>(5^1B_{2g})</td>
<td>55.9 0</td>
<td>92% (1,-14)</td>
</tr>
<tr>
<td>40</td>
<td>(7^1B_{1u})</td>
<td>56.4 0.03</td>
<td>75% (1,-17)</td>
</tr>
</tbody>
</table>

a Wavenumber in 10^3 cm$^{-1}$.

b Oscillator strength.

c The notation \((i,-j)\) indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the \(i\)'th highest occupied to the \(j\)'th lowest unoccupied MO.
DPDA, $\Phi = 45^\circ$ (D$_2$). TD-PBE1PBE/6-31+G*//[6-31G* (D$_{2h}$)]

<table>
<thead>
<tr>
<th>Term</th>
<th>$\tilde{\nu}^a$</th>
<th>f^b</th>
<th>Leading configurationsc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $^1\text{B}_1$</td>
<td>30.2</td>
<td>0.60</td>
<td>76% (1,-1), 14% (2,-2)</td>
</tr>
<tr>
<td>2 ^1A</td>
<td>30.8</td>
<td>0</td>
<td>71% (2,-1), 17% (1,-2)</td>
</tr>
<tr>
<td>3 ^1A</td>
<td>33.3</td>
<td>0</td>
<td>63% (1,-2), 16% (2,-1)</td>
</tr>
<tr>
<td>4 $^1\text{B}_2$</td>
<td>38.5</td>
<td>2·10$^{-4}$</td>
<td>49% (1,-3), 40% (3,-1)</td>
</tr>
<tr>
<td>5 $^1\text{B}_3$</td>
<td>38.5</td>
<td>1·10$^{-4}$</td>
<td>49% (1,-4), 40% (4,-1)</td>
</tr>
<tr>
<td>6 $^1\text{B}_1$</td>
<td>40.5</td>
<td>1.40</td>
<td>72% (2,-2), 7% (1,-1)</td>
</tr>
<tr>
<td>7 ^1A</td>
<td>42.9</td>
<td>0</td>
<td>49% (5,-1), 42% (1,-5)</td>
</tr>
<tr>
<td>8 $^2\text{B}_3$</td>
<td>43.2</td>
<td>0.07</td>
<td>42% (1,-4), 40% (4,-1)</td>
</tr>
<tr>
<td>9 $^2\text{B}_2$</td>
<td>43.2</td>
<td>0.07</td>
<td>42% (1,-3), 40% (3,-1)</td>
</tr>
<tr>
<td>10 ^1A</td>
<td>44.9</td>
<td>0</td>
<td>38% (1,-5), 32% (5,-1)</td>
</tr>
<tr>
<td>11 $^1\text{B}_3$</td>
<td>45.2</td>
<td>5·10$^{-3}$</td>
<td>66% (2,-3), 18% (3,-2)</td>
</tr>
<tr>
<td>12 $^1\text{B}_2$</td>
<td>45.2</td>
<td>0.01</td>
<td>66% (2,-4), 18% (4,-2)</td>
</tr>
<tr>
<td>13 $^4\text{B}_2$</td>
<td>46.1</td>
<td>1·10$^{-4}$</td>
<td>90% (1,-6)</td>
</tr>
<tr>
<td>14 $^1\text{B}_1$</td>
<td>46.5</td>
<td>0.05</td>
<td>58% (5,-2), 29% (2,-5)</td>
</tr>
<tr>
<td>15 $^1\text{B}_3$</td>
<td>47.5</td>
<td>0.01</td>
<td>63% (3,-2), 15% (2,-3)</td>
</tr>
<tr>
<td>16 $^5\text{B}_2$</td>
<td>47.5</td>
<td>0.08</td>
<td>66% (4,-2), 15% (2,-4)</td>
</tr>
<tr>
<td>17 $^5\text{B}_3$</td>
<td>47.6</td>
<td>0.01</td>
<td>86% (1,-7)</td>
</tr>
<tr>
<td>18 $^4\text{B}_1$</td>
<td>47.8</td>
<td>0.13</td>
<td>50% (6,-1), 33% (2,-5)</td>
</tr>
<tr>
<td>19 $^5\text{B}_1$</td>
<td>50.0</td>
<td>0.14</td>
<td>42% (1,-11), 22% (6,-1)</td>
</tr>
<tr>
<td>20 $^6\text{B}_2$</td>
<td>50.6</td>
<td>3·10$^{-3}$</td>
<td>84% (1,-8)</td>
</tr>
<tr>
<td>21 $^6\text{B}_3$</td>
<td>50.9</td>
<td>6·10$^{-4}$</td>
<td>77% (2,-6), 15% (2,-8)</td>
</tr>
<tr>
<td>22 ^6A</td>
<td>51.4</td>
<td>0</td>
<td>94% (1,-9)</td>
</tr>
<tr>
<td>23 $^6\text{B}_1$</td>
<td>52.1</td>
<td>0.08</td>
<td>86% (1,-10)</td>
</tr>
<tr>
<td>24 ^7A</td>
<td>52.2</td>
<td>0</td>
<td>58% (6,-2), 13% (3,-4)</td>
</tr>
<tr>
<td>25 $^7\text{B}_1$</td>
<td>52.5</td>
<td>0.97</td>
<td>29% (4,-4), 29% (3,-3)</td>
</tr>
<tr>
<td>26 $^7\text{B}_2$</td>
<td>53.1</td>
<td>2·10$^{-4}$</td>
<td>87% (2,-7)</td>
</tr>
<tr>
<td>27 $^7\text{B}_3$</td>
<td>53.8</td>
<td>0.01</td>
<td>35% (1,-12), 32% (5,-3)</td>
</tr>
<tr>
<td>28 $^8\text{B}_2$</td>
<td>53.9</td>
<td>0.04</td>
<td>51% (5,-4), 15% (4,-5)</td>
</tr>
<tr>
<td>29 $^8\text{B}_3$</td>
<td>53.9</td>
<td>< 10$^{-4}$</td>
<td>48% (1,-12), 15% (3,-5)</td>
</tr>
<tr>
<td>30 $^8\text{B}_1$</td>
<td>54.0</td>
<td>0.21</td>
<td>76% (7,-1), 11% (1,-11)</td>
</tr>
<tr>
<td>31 ^8A</td>
<td>54.6</td>
<td>0</td>
<td>53% (2,-11), 17% (6,-2)</td>
</tr>
<tr>
<td>32 ^9A</td>
<td>54.6</td>
<td>0</td>
<td>52% (3,-4), 47% (4,-3)</td>
</tr>
<tr>
<td>33 $^9\text{B}_1$</td>
<td>54.6</td>
<td>< 10$^{-4}$</td>
<td>50% (4,-4), 50% (3,-3)</td>
</tr>
<tr>
<td>34 $^{10}\text{B}_1$</td>
<td>55.1</td>
<td>1·10$^{-4}$</td>
<td>55% (3,-6), 42% (4,-7)</td>
</tr>
<tr>
<td>35 ^{10}A</td>
<td>55.1</td>
<td>0</td>
<td>54% (4,-6), 42% (3,-7)</td>
</tr>
<tr>
<td>36 $^9\text{B}_3$</td>
<td>55.8</td>
<td>9·10$^{-4}$</td>
<td>65% (2,-8), 13% (2,-6)</td>
</tr>
<tr>
<td>37 ^{11}A</td>
<td>56.2</td>
<td>0</td>
<td>82% (2,-13), 12% (2,-10)</td>
</tr>
<tr>
<td>38 $^{11}\text{B}_1$</td>
<td>56.3</td>
<td>3·10$^{-4}$</td>
<td>72% (2,-9), 11% (1,-15)</td>
</tr>
<tr>
<td>39 $^9\text{B}_2$</td>
<td>56.5</td>
<td>4·10$^{-4}$</td>
<td>89% (1,-14)</td>
</tr>
<tr>
<td>40 $^{12}\text{B}_1$</td>
<td>56.7</td>
<td>0.03</td>
<td>55% (1,-15), 17% (2,-9)</td>
</tr>
</tbody>
</table>

a Wavenumber in 103 cm$^{-1}$.

b Oscillator strength.

c The notation (i,j) indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the i'th highest occupied to the j'th lowest unoccupied MO.
DPDA, Φ = 90° (D_{2d}). TD-PBE1PBE/6-31+G*/[6-31G* (D_{2h})]

<table>
<thead>
<tr>
<th>Term</th>
<th>$\tilde{\nu}^a$</th>
<th>f^b</th>
<th>Leading configurations c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1B_1</td>
<td>30.2</td>
<td>45% (2,-1), 45% (2,-2)</td>
</tr>
<tr>
<td>2</td>
<td>1A_2</td>
<td>30.9</td>
<td>48% (2,-1), 48% (1,-2)</td>
</tr>
<tr>
<td>3</td>
<td>2A_1</td>
<td>33.0</td>
<td>41% (2,-2), 41% (1,-1)</td>
</tr>
<tr>
<td>4</td>
<td>1B_2</td>
<td>37.9</td>
<td>38% (2,-2), 38% (1,-1)</td>
</tr>
<tr>
<td>5</td>
<td>1E</td>
<td>39.3</td>
<td>24% (2,-3), 24% (2,-4), 21% (3,-2), 21% (4,-2)</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>24% (1,-3), 24% (1,-4), 21% (3,-1), 21% (4,-1)</td>
</tr>
<tr>
<td>7</td>
<td>2E</td>
<td>43.1</td>
<td>40% (1,-3), 39% (1,-4)</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>40% (2,-3), 39% (2,-4)</td>
</tr>
<tr>
<td>9</td>
<td>3E</td>
<td>44.3</td>
<td><10^{-4} 42% (4,-2), 42% (3,-2)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>42% (4,-1), 42% (3,-1)</td>
</tr>
<tr>
<td>11</td>
<td>1E</td>
<td>46.1</td>
<td>15% (4,-2), 15% (3,-2), 15% (2,-4), 14% (2,-3)</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.24</td>
<td>15% (4,-1), 15% (3,-1), 15% (1,-4), 14% (1,-3)</td>
</tr>
<tr>
<td>13</td>
<td>2A_2</td>
<td>46.4</td>
<td>44% (6,-1), 44% (5,-2)</td>
</tr>
<tr>
<td>14</td>
<td>2B_1</td>
<td>46.6</td>
<td>44% (6,-1), 44% (5,-2)</td>
</tr>
<tr>
<td>15</td>
<td>1E</td>
<td>47.7</td>
<td><10^{-4} 42% (1,-5), 31% (2,-5)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>42% (2,-5), 31% (1,-5)</td>
</tr>
<tr>
<td>17</td>
<td>1A_1</td>
<td>48.5</td>
<td>37% (6,-2), 37% (5,-1)</td>
</tr>
<tr>
<td>18</td>
<td>2B_2</td>
<td>48.5</td>
<td>34% (6,-2), 34% (5,-1), 14% (2,-8), 14% (1,-7)</td>
</tr>
<tr>
<td>19</td>
<td>1B_1</td>
<td>48.7</td>
<td>43% (2,-7), 43% (1,-8)</td>
</tr>
<tr>
<td>20</td>
<td>3A_2</td>
<td>49.0</td>
<td>44% (2,-7), 44% (1,-8)</td>
</tr>
<tr>
<td>21</td>
<td>6E</td>
<td>49.9</td>
<td>0.01 48% (1,-6), 25% (2,-6)</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>48% (2,-6), 25% (1,-6)</td>
</tr>
<tr>
<td>23</td>
<td>4A_1</td>
<td>50.0</td>
<td>41% (2,-8), 41% (2,-8)</td>
</tr>
<tr>
<td>24</td>
<td>2B_2</td>
<td>52.5</td>
<td>33% (3,-3), 32% (4,-4)</td>
</tr>
<tr>
<td>25</td>
<td>1E</td>
<td>52.8</td>
<td>68% (2,-9), 12% (2,-5)</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1.36</td>
<td>68% (1,-9), 12% (1,-5)</td>
</tr>
<tr>
<td>27</td>
<td>4B_1</td>
<td>53.1</td>
<td>48% (2,-10), 48% (1,-11)</td>
</tr>
<tr>
<td>28</td>
<td>4A_2</td>
<td>53.1</td>
<td>48% (2,-10), 48% (1,-11)</td>
</tr>
<tr>
<td>29</td>
<td>5A_1</td>
<td>54.6</td>
<td>51% (4,-3), 49% (3,-4)</td>
</tr>
<tr>
<td>30</td>
<td>4B_2</td>
<td>54.6</td>
<td>50% (4,-4), 49% (3,-3)</td>
</tr>
<tr>
<td>31</td>
<td>6A_1</td>
<td>54.7</td>
<td>46% (2,-11), 46% (1,-10)</td>
</tr>
<tr>
<td>32</td>
<td>5B_2</td>
<td>54.7</td>
<td>44% (2,-11), 44% (1,-10)</td>
</tr>
<tr>
<td>33</td>
<td>6B_2</td>
<td>55.0</td>
<td>52% (3,-5), 45% (4,-6)</td>
</tr>
<tr>
<td>34</td>
<td>5B_1</td>
<td>55.0</td>
<td>52% (4,-5), 45% (3,-6)</td>
</tr>
<tr>
<td>35</td>
<td>8E</td>
<td>55.7</td>
<td>2·10^{-3} 77% (1,-12)</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>77% (2,-12)</td>
</tr>
<tr>
<td>37</td>
<td>7A_1</td>
<td>56.3</td>
<td>28% (4,-3), 26% (3,-4)</td>
</tr>
<tr>
<td>38</td>
<td>9E</td>
<td>56.3</td>
<td>0.08 16% (6,-3), 15% (6,-4), 15% (5,-3), 14% (5,-4)</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>16% (5,-3), 15% (6,-3), 15% (5,-4), 14% (6,-4)</td>
</tr>
<tr>
<td>40</td>
<td>5A_2</td>
<td>56.9</td>
<td>0 41% (8,-1), 41% (7,-2)</td>
</tr>
</tbody>
</table>

a Wavenumber in 10^3 cm^{-1}.

b Oscillator strength.

c The notation (i,j) indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the i'th highest occupied to the j'th lowest unoccupied MO.
Gaussian 03: x86-Linux-G03RevB.04 2-Jun-2003
7-Nov-2008

t td(Nst=40,conver=3) pbe1pbe/6-31+G*

1,4-Diphenylbuta-1,3-diyne, D = 0.0 (pbe1pbe/6-31+G*/6-31G*)

Framework group D2H[C2"(HCCCC.CCCCH),SG(C8H8)]

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

324 basis functions, 552 primitive gaussians, 324 cartesian basis functions
53 alpha electrons 53 beta electrons

SCF Done: E(RPBE+HF-PBE) = -614.896831082 A.U. after 102 cycles
Convg = 0.6948D-08 -V/T = 2.0089

Excited states from <AA,BB:AA,BB> singles matrix:

<table>
<thead>
<tr>
<th>Ground to excited state Transition electric dipole moments (Au):</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>27</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
</tbody>
</table>
Excitation energies and oscillator strengths:

→ MO parentage [in brackets] added by J. Spanget-Larsen. The notation \([i, -j]\) indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the \(i\)’th highest occupied to the \(j\)’th lowest unoccupied MO.

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B1U</th>
<th>29.72232 1000/cm</th>
<th>336.45 nm</th>
<th>f=0.9342</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 -> 56</td>
<td>-0.25056</td>
<td>13% [2, -3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 54</td>
<td>0.62888</td>
<td>79% [1, -1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-AU</th>
<th>31.24026 1000/cm</th>
<th>320.10 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 -> 54</td>
<td>0.67975</td>
<td>92% [2, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 56</td>
<td>-0.10508</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-AU</th>
<th>33.98577 1000/cm</th>
<th>294.24 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 -> 54</td>
<td>0.14079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 56</td>
<td>0.68361</td>
<td>93% [1, -3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B3G</th>
<th>38.04677 1000/cm</th>
<th>262.83 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 -> 58</td>
<td>-0.14252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 -> 54</td>
<td>0.45993</td>
<td>42% [4, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 55</td>
<td>0.14350</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 57</td>
<td>0.50722</td>
<td>51% [1, -4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B2U</th>
<th>38.05967 1000/cm</th>
<th>262.75 nm</th>
<th>f=0.0003</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 -> 57</td>
<td>-0.14309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 -> 55</td>
<td>0.14334</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 54</td>
<td>0.46202</td>
<td>43% [3, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 58</td>
<td>0.50528</td>
<td>51% [1, -5]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-AG</th>
<th>40.1051 1000/cm</th>
<th>249.34 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 -> 54</td>
<td>0.43191</td>
<td>37% [5, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 55</td>
<td>0.56250</td>
<td>63% [1, -2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B3G</th>
<th>42.85222 1000/cm</th>
<th>233.36 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 -> 58</td>
<td>-0.10146</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 -> 54</td>
<td>0.48425</td>
<td>47% [4, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 57</td>
<td>-0.45484</td>
<td>41% [1, -4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B2U</th>
<th>42.92319 1000/cm</th>
<th>232.98 nm</th>
<th>f=0.1222</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 -> 57</td>
<td>-0.10311</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 54</td>
<td>0.48206</td>
<td>46% [3, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 58</td>
<td>-0.45653</td>
<td>42% [1, -5]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-AG</th>
<th>43.6628 1000/cm</th>
<th>229.03 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 -> 56</td>
<td>0.10832</td>
<td>49% [5, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 -> 54</td>
<td>0.49331</td>
<td>49% [5, -1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 -> 58</td>
<td>0.14551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 57</td>
<td>0.14614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 55</td>
<td>-0.35142</td>
<td>25% [1, -2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B1G</th>
<th>44.3516 1000/cm</th>
<th>225.47 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 -> 54</td>
<td>0.14852</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 55</td>
<td>0.68324</td>
<td>93% [2, -2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet-B2G</th>
<th>45.40012 1000/cm</th>
<th>220.27 nm</th>
<th>f=0.0000</th>
</tr>
</thead>
</table>
Excited State 12: Singlet-B1U 45.82517 1000/cm 218.22 nm f=1.3046
53 -> 59 0.67529 91% [1,-6]
53 -> 61 0.17456

Excited State 13: Singlet-B2G 46.80595 1000/cm 213.65 nm f=0.0000
52 -> 57 0.70249 99% [2,-4]

Excited State 14: Singlet-B3U 46.83095 1000/cm 213.53 nm f=0.0038
52 -> 58 0.70450 99% [3,-3]

Excited State 15: Singlet-B3G 50.12572 1000/cm 199.50 nm f=0.0000
53 -> 63 0.69464 97% [1,-10]

Excited State 16: Singlet-B1G 48.14563 1000/cm 207.70 nm f=0.0000
46 -> 56 -0.12423
49 -> 56 0.68537 94% [5,-3]

Excited State 17: Singlet-B2G 50.00716 1000/cm 199.97 nm f=0.0000
53 -> 59 -0.17226
53 -> 61 0.66312 88% [1,-8]

Excited State 18: Singlet-B2U 50.11846 1000/cm 199.53 nm f=0.0011
48 -> 58 -0.13593
49 -> 57 -0.42341 36% [5,-4]
50 -> 55 0.61047 52% [4,-2]
51 -> 54 -0.15324
53 -> 58 -0.11842

Excited State 19: Singlet-B3G 50.12572 1000/cm 199.50 nm f=0.0000
48 -> 57 -0.13636
49 -> 58 -0.42109 35% [5,-5]
50 -> 54 -0.15325
51 -> 55 0.51173 52% [3,-2]
53 -> 57 -0.11783

Excited State 20: Singlet-B3U 50.58062 1000/cm 197.70 nm f=0.0000
51 -> 56 0.70450 99% [3,-3]

Excited State 21: Singlet-B2G 50.58788 1000/cm 197.68 nm f=0.0000
50 -> 56 0.70291 99% [4,-3]

Excited State 22: Singlet-AU 50.59997 1000/cm 197.63 nm f=0.0000
53 -> 62 0.69037 95% [1,-9]
53 -> 66 0.11548

Excited State 23: Singlet-B1U 50.68386 1000/cm 197.30 nm f=0.1786
48 -> 54 0.50578 51% [6,-1]
52 -> 56 0.17308
53 -> 65 0.40307 32% [1,-12]
53 -> 70 -0.12021

Excited State 24: Singlet-B1G 51.5993 1000/cm 193.80 nm f=0.0000
53 -> 63 0.69464 97% [1,-10]

Excited State 25: Singlet-B1U 51.72834 1000/cm 193.32 nm f=0.4041
49 -> 55 0.47541 45% [5,-2]
50 -> 57 0.32835 22% [4,-4]
51 -> 58 0.32366 21% [3,-5]
Excited State 26: Singlet-B3G 52.45182 1000/cm 190.65 nm f=0.0000
 52 -> 59 0.62537 78% [2,-6]
 52 -> 61 0.29422 17% [2,-8]

Excited State 27: Singlet-B1G 52.53409 1000/cm 190.35 nm f=0.0000
 44 -> 54 0.10138
 47 -> 54 0.66575 89% [7,-1]
 52 -> 55 -0.15606

Excited State 28: Singlet-B3U 53.14142 1000/cm 188.18 nm f=0.0043
 49 -> 54 0.10138
 47 -> 54 0.66575 89% [2,-6]
 52 -> 55 -0.15606

Excited State 29: Singlet-B1U 54.00121 1000/cm 185.18 nm f=1.2587
 49 -> 55 0.42605 36% [5,-2]
 50 -> 58 -0.22691 10% [4,-4]
 52 -> 56 -0.12939
 53 -> 65 0.38379 29% [1,-11]

Excited State 30: Singlet-AG 54.25205 1000/cm 184.32 nm f=0.0000
 46 -> 54 0.24696 12% [8,-1]
 47 -> 56 -0.13384
 48 -> 55 0.16269
 50 -> 58 0.35762 26% [4,-5]
 51 -> 57 0.41609 35% [3,-4]

Excited State 31: Singlet-B1U 54.60129 1000/cm 183.15 nm f=0.0006
 49 -> 57 0.49467 49% [4,-4]
 51 -> 58 0.50481 51% [3,-5]

Excited State 32: Singlet-AG 54.60210 1000/cm 183.14 nm f=0.0000
 50 -> 58 0.52126 54% [4,-5]
 51 -> 57 0.47733 46% [3,-4]

Excited State 33: Singlet-B2U 54.93924 1000/cm 182.02 nm f=0.0610
 49 -> 57 -0.23294 11% [5,-4]
 50 -> 55 -0.20193
 52 -> 60 0.60624 74% [2,-7]
 53 -> 66 -0.12866

Excited State 34: Singlet-AU 54.94569 1000/cm 182.00 nm f=0.0000
 50 -> 59 0.50977 52% [4,-6]
 51 -> 60 0.45674 42% [3,-7]
 53 -> 66 -0.12647

Excited State 35: Singlet-B1G 54.95618 1000/cm 181.96 nm f=0.0000
 50 -> 60 0.46467 43% [4,-7]
 51 -> 59 0.51876 54% [3,-6]

Excited State 36: Singlet-B3G 55.42155 1000/cm 180.43 nm f=0.0000
 49 -> 58 0.50405 51% [5,-5]
 51 -> 55 0.39648 31% [3,-2]
 52 -> 59 0.10319

Excited State 37: Singlet-B2U 55.54576 1000/cm 180.03 nm f=0.3655
 49 -> 57 0.44783 40% [5,-4]
 50 -> 55 0.35026 25% [4,-2]
 52 -> 60 0.33401 22% [2,-7]

Excited State 38: Singlet-AU 55.56592 1000/cm 179.97 nm f=0.0000
 48 -> 56 0.13545
 50 -> 59 0.10131
 53 -> 66 0.65765 87% [1,-13]
Excited State 39: Singlet-B2G 55.92162 1000/cm 178.82 nm f=0.0000
53 -> 61 -0.10740
53 -> 67 0.67979 92% [1, -14]

Excited State 40: Singlet-B1U 56.40475 1000/cm 177.29 nm f=0.0276
49 -> 55 -0.14255
50 -> 57 0.13521
51 -> 58 0.13624
53 -> 65 0.17406
53 -> 70 0.61238 75% [1, -17]
53 -> 74 0.11249

Orbital symmetries:
Occupied (B1U) (AG) (AG) (B1U) (AG) (B3G) (B2U) (B1U)
 (AG) (B1U) (AG) (B2U) (B3G) (B1U) (AG) (B1U)
 (AG) (B1U) (AG) (B3G) (B2U) (B1U) (AG) (B1U)
 (B3G) (AG) (B1U) (AG) (B1U) (AG) (B3G) (B3U)
 (B3U) (AG) (B1U) (B3G) (B2U) (B1U) (AG) (B1U)
 (B3G) (B1U) (AG) (B2G) (B2U) (B1U) (AG) (B1U)
 (B2U) (B1U) (B1U) (B3G) (B2U) (B1U) (AG) (B1U)
 (B3G) (B1U) (B2U) (B3G) (B2U) (B1U) (AG) (B1U)
 (B1U) (AG) (AG) (B1U) (B3G) (B2U) (B2G) (B1U)
 (AG) (B1U) (B1U) (AG) (B2U) (B1U) (B2G) (B1U)
 (AG) (B1U) (B1U) (AG) (B2U) (B1U) (B3G) (B1U)

Virtual (B3U) (B2G) (B2U) (B1G) (AU) (AG) (B1U) (AG) (B2U)
 (B3G) (B1U) (B3U) (B2U) (AG) (B3G) (B2U) (B1U)
 (B1U) (AG) (B1U) (B3U) (B2U) (B1U) (AG) (B1U)
 (B2U) (B1U) (B1U) (B3G) (B2U) (B1U) (AG) (B1U)
 (B3G) (B1U) (B2G) (B3G) (B2U) (B1U) (AG) (B1U)
 (B2U) (B1U) (B1U) (B1U) (B3G) (B2U) (B1U) (AG)
 (B3G) (B1U) (AG) (B2G) (B2U) (B1U) (B3G) (B1U)
 (B2U) (B1U) (B1U) (B1U) (B3G) (B2U) (B1U) (AG)
 (B3G) (B1U) (AG) (B2G) (B2U) (B1U) (AG) (B1U)

The electronic state is 1-AG.
Alpha occ. eigenvalues -- -0.27815 -0.26039 -0.22581
Alpha virt. eigenvalues -- -0.06728 -0.01782 -0.01629 -0.01559 -0.01541
Alpha virt. eigenvalues -- 0.01017 0.01275 0.03057 0.03131 0.03358
Alpha virt. eigenvalues -- 0.04223 0.04790 0.05328 0.05516 0.06219
Alpha virt. eigenvalues -- 0.06340 0.06354 0.06977 0.07698 0.08220
Alpha virt. eigenvalues -- 0.08711 0.09300 0.09800 0.09818 0.09922
Alpha virt. eigenvalues -- 0.10391 0.11743 0.12336 0.13979 0.14442
Alpha virt. eigenvalues -- 0.14442 0.14840 0.15057 0.15267 0.15427
Alpha virt. eigenvalues -- 0.15733 0.15886 0.15901 0.16123 0.16358
Alpha virt. eigenvalues -- 0.16373 0.16936 0.17394 0.17981 0.18134
Alpha virt. eigenvalues -- 0.18134 0.18595 0.19871 0.21421 0.21484
Alpha virt. eigenvalues -- 0.21484 0.21639 0.21920 0.22205 0.22865
Alpha virt. eigenvalues -- 0.22865 0.23341 0.23689 0.24018 0.24918
Alpha virt. eigenvalues -- 0.24918 0.25115 0.25663 0.26098 0.27311
Alpha virt. eigenvalues -- 0.27311 0.27607 0.28326 0.28701 0.29540
Alpha virt. eigenvalues -- 0.29540 0.30807 0.31028 0.32151 0.32505
Alpha virt. eigenvalues -- 0.32505 0.33934 0.34361 0.34589 0.35681
Alpha virt. eigenvalues -- 0.35681 0.35906 0.36072 0.36445 0.44022
Alpha virt. eigenvalues -- 0.44022 0.45498 0.47299 0.49594 0.55036
Alpha virt. eigenvalues -- 0.55036 0.57676 0.57872 0.61239 0.64257
Alpha virt. eigenvalues -- 0.64257 0.65561 0.67116 0.68282 0.69875
Alpha virt. eigenvalues -- 0.69875 0.71330 0.71439 0.72800 0.75754
Alpha virt. eigenvalues -- 0.75754 0.75768 0.76186 0.76474 0.77365
Alpha virt. eigenvalues -- 0.77365 0.78154 0.79087 0.79373 0.82034
Alpha virt. eigenvalues -- 0.82034 0.82085 0.83502 0.84407 0.86852
Alpha virt. eigenvalues -- 0.86852 0.87049 0.88642 0.90889 0.93333
Alpha virt. eigenvalues -- 0.93333 0.93737 0.95617 0.96014 0.98167
Alpha virt. eigenvalues -- 0.98167 0.98378 0.99180 1.01065 1.02369
Alpha virt. eigenvalues -- 1.02369 1.03964 1.04403 1.09329 1.11265
Alpha virt. eigenvalues -- 1.11265 1.12901 1.15025 1.16483 1.19911
Alpha virt. eigenvalues -- 1.19911 1.21131 1.23354 1.26363 1.23842
Alpha virt. eigenvalues -- 1.23842 1.23859 1.24919 1.25817 1.31059
Alpha virt. eigenvalues -- 1.31059 1.31885 1.34108 1.34719 1.42947
Alpha virt. eigenvalues -- 1.42947 1.43751 1.43992 1.44434 1.45677
Alpha virt. eigenvalues -- 1.45677 1.46084 1.47499 1.48443 1.49337
Alpha virt. eigenvalues -- 1.49337 1.49845 1.50110 1.50217 1.59285
Alpha virt. eigenvalues -- 1.59285 1.61751 1.62479 1.67810 1.82279
Alpha virt. eigenvalues -- 1.82279 1.82510 1.84360 1.86694 1.89813
Alpha virt. eigenvalues -- 1.89813 1.90192 1.90524 1.92921 1.95315
Alpha virt. eigenvalues -- 1.95315 1.97088 2.00162 2.00335 2.01136
Alpha virt. eigenvalues -- 2.01136 2.02792 2.06618 2.08452 2.13380
Alpha virt. eigenvalues -- 2.13380 2.14635 2.15392 2.15522 2.18565
Alpha virt. eigenvalues -- 2.18565 2.20235 2.20650 2.21984 2.27845
Alpha virt. eigenvalues -- 2.27845 2.30377 2.30626 2.31263 2.35118
Alpha virt. eigenvalues -- 2.35118 2.38614 2.39796 2.51293 2.59565
Alpha virt. eigenvalues -- 2.59565 2.60735 2.63059 2.63949 2.65230
Alpha virt. eigenvalues -- 2.65230 2.66768 2.70373 2.73058 2.76190
Alpha virt. eigenvalues -- 2.76190 2.76300 2.77849 2.78187 2.87049
Alpha virt. eigenvalues -- 2.87049 2.88032 2.98042 3.04050 3.18177
Alpha virt. eigenvalues -- 3.18177 3.33028 3.35591 3.41856 3.77405
Alpha virt. eigenvalues -- 3.77405 4.22614 4.27414 4.27679 4.29924
Alpha virt. eigenvalues -- 4.29924 4.31868 4.33865 4.40114 4.44037
Alpha virt. eigenvalues -- 4.44037 4.54599 4.60097 4.64011 4.90386
Alpha virt. eigenvalues -- 4.90386 5.64359

Normal termination of Gaussian 03 at Sat Nov 8 10:04:25 2008.
Gaussian 03: x86-Linux-G03RevB.04 2-Jun-2003 7-Nov-2008

1,4-Diphenylbuta-1,3-diyne, D=45 (based on pbe1pbe/6-31G* D2h geo.)

Framework group D2[C2(HCCCC.CCCCH),X(C8H8)]

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 0.679461</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 -0.679461</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 1.899660</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 -1.899660</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 3.318498</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 -3.318498</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>-0.463706 1.119485 4.030916</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0.463706 1.119485 -4.030916</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0.463706 -1.119485 4.030916</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-0.463706 -1.119485 -4.030916</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>-0.461549 1.114279 5.419091</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.461549 1.114279 -5.419091</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.461549 -1.114279 5.419091</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-0.461549 -1.114279 -5.419091</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 6.117221</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>0.000000 0.000000 -6.117221</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>-0.822033 1.984562 3.481442</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.822033 1.984562 -3.481442</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>-0.822033 -1.984562 3.481442</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.822033 -1.984562 -3.481442</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>-0.822185 1.984931 5.959837</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0.822185 1.984931 -5.959837</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>-0.822185 -1.984931 5.959837</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.822185 -1.984931 -5.959837</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.000000 0.000000 7.203732</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0.000000 0.000000 -7.203732</td>
</tr>
</tbody>
</table>

324 basis functions, 552 primitive gaussians, 324 cartesian basis functions
53 alpha electrons 53 beta electrons

SCF Done: E(RPBE+HF-PBE) = -614.896597490 A.U. after 26 cycles
Convg = 0.7835D-08 -V/T = 2.0089

Excited states from <AA,BB:AA,BB> singles matrix:

Ground to excited state Transition electric dipole moments (Au):

<table>
<thead>
<tr>
<th>state</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>2.5635</td>
<td>0.6032</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>-0.0436</td>
<td>0.0000</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>0.0245</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-3.3713</td>
<td>1.3996</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Osc.</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>-0.2764</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0100</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>0.7378</td>
<td>0.0000</td>
<td>0.0714</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.1861</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0048</td>
</tr>
<tr>
<td>12</td>
<td>0.0000</td>
<td>-0.3177</td>
<td>0.0000</td>
<td>0.0139</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>0.7568</td>
<td>0.0000</td>
<td>0.0826</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>-0.2979</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0128</td>
</tr>
<tr>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>-0.2315</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0077</td>
</tr>
<tr>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>0.1401</td>
<td>0.0000</td>
<td>0.0030</td>
</tr>
<tr>
<td>20</td>
<td>-0.0617</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0006</td>
</tr>
<tr>
<td>21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.7115</td>
<td>0.0801</td>
</tr>
<tr>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>25</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-2.4722</td>
<td>0.9739</td>
</tr>
<tr>
<td>26</td>
<td>0.0000</td>
<td>0.0393</td>
<td>0.0000</td>
<td>0.0002</td>
</tr>
<tr>
<td>27</td>
<td>-0.2368</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0092</td>
</tr>
<tr>
<td>28</td>
<td>0.0000</td>
<td>0.5084</td>
<td>0.0000</td>
<td>0.0423</td>
</tr>
<tr>
<td>29</td>
<td>-0.0147</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>30</td>
<td>0.0000</td>
<td>0.0000</td>
<td>1.1417</td>
<td>0.2139</td>
</tr>
<tr>
<td>31</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>32</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0019</td>
<td>0.0000</td>
</tr>
<tr>
<td>33</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>34</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.2777</td>
<td>0.0001</td>
</tr>
<tr>
<td>35</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>36</td>
<td>-0.0748</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0009</td>
</tr>
<tr>
<td>37</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>38</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0385</td>
<td>0.0003</td>
</tr>
<tr>
<td>39</td>
<td>0.0000</td>
<td>-0.0455</td>
<td>0.0000</td>
<td>0.0004</td>
</tr>
<tr>
<td>40</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.4421</td>
<td>0.0336</td>
</tr>
</tbody>
</table>

Ground to excited state transition velocity dipole Moments (Au):

<table>
<thead>
<tr>
<th>state</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.3475</td>
<td>0.5848</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0055</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>5</td>
<td>-0.0013</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.6150</td>
<td>1.3650</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.0625</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0133</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>-0.1471</td>
<td>0.0000</td>
<td>0.0733</td>
</tr>
<tr>
<td>10</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>-0.0259</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0022</td>
</tr>
<tr>
<td>12</td>
<td>0.0000</td>
<td>0.0734</td>
<td>0.0000</td>
<td>0.0174</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>-0.0005</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.1239</td>
<td>0.0483</td>
</tr>
<tr>
<td>15</td>
<td>0.0637</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0125</td>
</tr>
<tr>
<td>16</td>
<td>0.0000</td>
<td>-0.1679</td>
<td>0.0000</td>
<td>0.0868</td>
</tr>
<tr>
<td>17</td>
<td>0.0420</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0054</td>
</tr>
<tr>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1966</td>
<td>0.1184</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.2215</td>
<td>0.1435</td>
</tr>
<tr>
<td>20</td>
<td>0.0000</td>
<td>-0.0333</td>
<td>0.0000</td>
<td>0.0032</td>
</tr>
<tr>
<td>21</td>
<td>0.0181</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0009</td>
</tr>
<tr>
<td>22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.1679</td>
<td>0.0792</td>
</tr>
<tr>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>25</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.5817</td>
<td>0.9439</td>
</tr>
<tr>
<td>26</td>
<td>0.0000</td>
<td>-0.0142</td>
<td>0.0000</td>
<td>0.0006</td>
</tr>
<tr>
<td>27</td>
<td>0.0612</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0102</td>
</tr>
<tr>
<td>28</td>
<td>0.0000</td>
<td>-0.1222</td>
<td>0.0000</td>
<td>0.0406</td>
</tr>
<tr>
<td>29</td>
<td>-0.0043</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
Excitation energies and oscillator strengths:
→ MO parentage [in brackets] added by J. Spanget-Larsen. The notation [i,-j] indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the i'th highest occupied to the j'th lowest unoccupied MO.

Excited State 1: Singlet-B1 30.21513 1000/cm 330.96 nm f=0.6032
52 -> 55 0.26193 14% [2,-2]
52 -> 58 -0.12953
53 -> 54 0.61636 76% [1,-1]

Excited State 2: Singlet-A 30.75229 1000/cm 325.18 nm f=0.0000
49 -> 54 0.14098
52 -> 54 0.59583 71% [2,-1]
53 -> 55 0.29323 17% [1,-2]

Excited State 3: Singlet-A 33.27519 1000/cm 300.53 nm f=0.0000
49 -> 54 -0.14826
52 -> 54 -0.28274 16% [2,-1]
53 -> 55 0.56068 63% [1,-2]
53 -> 58 -0.24551 12% [1,-5]

Excited State 4: Singlet-B2 38.5436 1000/cm 259.45 nm f=0.0002
49 -> 57 0.10876
50 -> 55 -0.16956
51 -> 54 -0.44609 40% [3,-1]
52 -> 57 -0.14927
53 -> 56 0.49290 49% [1,-3]

Excited State 5: Singlet-B3 38.54522 1000/cm 259.44 nm f=0.0001
49 -> 56 0.10876
50 -> 54 -0.44604 40% [4,-1]
51 -> 55 -0.16979
52 -> 56 -0.14952
53 -> 57 0.49275 49% [1,-4]

Excited State 6: Singlet-B1 40.54064 1000/cm 246.67 nm f=1.3996
48 -> 54 0.13905
52 -> 55 0.59853 72% [2,-2]
53 -> 54 -0.18814
53 -> 64 0.10971

Excited State 7: Singlet-A 42.91835 1000/cm 233.00 nm f=0.0000
49 -> 54 0.49284 49% [5,-1]
52 -> 54 -0.12593
53 -> 55 -0.15561
53 -> 58 -0.45582 42% [1,-5]

Excited State 8: Singlet-B3 43.16193 1000/cm 231.69 nm f=0.0100
50 -> 54 0.44666 40% [4,-1]
52 -> 56 0.22330 10% [2,-3]
53 -> 57 0.46000 42% [1,-4]

Excited State 9: Singlet-B2 43.18613 1000/cm 231.55 nm f=0.0714
51 -> 54 0.44540 40% [3,-1]
| Transition | Energy (cm⁻¹) | Wavelength (nm) | Oscillator Strength | | |
|--------------|--------------|-----------------|---------------------|--------|
| 52 → 57 | 0.22743 | 10% [2,-4] | | |
| 53 → 56 | 0.45937 | 42% [1,-3] | | |
| 52 → 54 | 0.39873 | 32% [5,-1] | | |
| 51 → 57 | 0.14055 | 18% [3,-2] | | |
| 52 → 54 | -0.10477 | 12% [4,-1] | | |
| 53 → 55 | 0.29813 | 18% [3,-2] | | |
| 52 → 56 | 0.57487 | 66% [2,-3] | | |
| 53 → 55 | 0.57265 | 66% [2,-4] | | |
| 53 → 58 | 0.16470 | | | |
| 53 → 57 | 0.43415 | 38% [1,-5] | | |
| 53 → 59 | 0.66909 | 90% [1,-6] | | |
| 53 → 61 | 0.18279 | | | |
| 52 → 58 | -0.10997 | 29% [2,-5] | | |
| 53 → 57 | 0.13688 | | | |
| 53 → 60 | -0.15983 | | | |
| 53 → 64 | 0.45647 | 42% [1,-11] | | |
| 53 → 68 | -0.10841 | | | |
Excited State 20: Singlet-B2 50.59594 1000/cm 197.64 nm f=0.0030
52 -> 60 0.17442
53 -> 59 -0.16031
53 -> 61 0.64642 84% [1,-8]
53 -> 67 0.10336

Excited State 21: Singlet-B3 50.91776 1000/cm 196.40 nm f=0.0006
52 -> 59 0.61913 77% [2,-6]
52 -> 61 0.26976 15% [2,-8]
53 -> 60 0.15923

Excited State 22: Singlet-A 51.43153 1000/cm 194.43 nm f=0.0000
53 -> 62 0.68428 94% [1,-9]
53 -> 66 0.11487

Excited State 23: Singlet-B1 52.1171 1000/cm 191.87 nm f=0.0801
50 -> 57 -0.10324
51 -> 56 -0.10190
52 -> 62 -0.11040
53 -> 63 0.65431 86% [1,-10]
53 -> 64 0.12155

Excited State 24: Singlet-A 52.18405 1000/cm 191.63 nm f=0.0000
46 -> 54 -0.16718
48 -> 55 0.53655 58% [6,-2]
50 -> 56 -0.24997 12% [4,-3]
51 -> 57 -0.25011 13% [3,-4]
52 -> 64 -0.11232

Excited State 25: Singlet-B1 52.46231 1000/cm 190.61 nm f=0.9739
47 -> 54 0.13580
49 -> 58 0.15059
50 -> 57 0.37769 29% [4,-4]
51 -> 56 0.37917 29% [3,-3]
52 -> 58 -0.14415
53 -> 63 0.19396
53 -> 64 -0.21113

Excited State 26: Singlet-B2 53.06561 1000/cm 188.45 nm f=0.0002
52 -> 60 0.65832 87% [2,-7]
52 -> 65 -0.11014
53 -> 59 0.12710
53 -> 61 -0.14381

Excited State 27: Singlet-B3 53.82296 1000/cm 185.79 nm f=0.0092
49 -> 56 0.39695 32% [5,-3]
51 -> 58 -0.31642 20% [3,-5]
52 -> 61 0.13224
53 -> 65 0.41912 35% [1,-12]

Excited State 28: Singlet-B2 53.877 1000/cm 185.61 nm f=0.0423
48 -> 56 -0.10952
49 -> 57 0.50631 51% [5,-4]
50 -> 58 -0.41779 35% [4,-5]
51 -> 54 0.10554

Excited State 29: Singlet-B3 53.91733 1000/cm 185.47 nm f=0.0000
49 -> 56 -0.32508 21% [5,-3]
51 -> 58 0.27192 15% [3,-5]
52 -> 59 -0.11138
52 -> 61 0.17325
53 -> 65 0.48921 48% [1,-12]

Excited State 30: Singlet-B1 54.01493 1000/cm 185.13 nm f=0.2139
Excited State 31: Singlet-A

\[E(47 \rightarrow 54) = 0.61693 \quad 76\% \quad [7,-1] \]

\[E(53 \rightarrow 64) = 0.23559 \quad 11\% \quad [1,-11] \]

Excited State 32: Singlet-B1

\[E(50 \rightarrow 57) = 0.49932 \quad 50\% \quad [4,-4] \]

Excited State 33: Singlet-A

\[E(50 \rightarrow 56) = 0.48456 \quad 47\% \quad [4,-3] \]

Excited State 34: Singlet-B1

\[E(52 \rightarrow 60) = 0.45942 \quad 42\% \quad [4,-7] \]

Excited State 35: Singlet-A

\[E(52 \rightarrow 62) = 0.59834 \quad 72\% \quad [2,-9] \]

Excited State 36: Singlet-B3

\[E(52 \rightarrow 65) = -0.25598 \quad 13\% \quad [2,-6] \]

Excited State 37: Singlet-A

\[E(52 \rightarrow 63) = -0.10236 \quad 17\% \quad [2,-9] \]

Excited State 38: Singlet-B1

\[E(53 \rightarrow 66) = 0.63897 \quad 82\% \quad [1,-13] \]

Excited State 39: Singlet-B2

\[E(53 \rightarrow 68) = 0.23075 \quad 11\% \quad [1,-15] \]

Excited State 40: Singlet-B1

\[E(53 \rightarrow 70) = -0.18167 \quad 17\% \quad [2,-9] \]

Orbital symmetries:

Occupied

\[(A) \ (B1) \ (A) \ (B1) \ (A) \ (B1) \ (B3) \ (B2) \ (B1) \ (A) \]
\[(A) \ (B1) \ (B2) \ (B3) \ (A) \ (B1) \ (B1) \ (A) \ (B1) \ (A) \]
\[(A) \ (B3) \ (B2) \ (A) \ (B1) \ (B2) \ (B3) \ (A) \ (B1) \ (B3) \ (B1) \]
\[(A) \ (B1) \ (B2) \ (B3) \ (B1) \ (A) \ (B2) \ (B3) \ (A) \]
\[(B2) \ (B1) \ (A) \ (B2) \ (B3) \ (B2) \ (B3) \ (A) \ (B1) \]
\[(B1) \ (B3) \ (B2) \ (A) \ (B1) \ (B2) \ (B3) \ (B1) \ (A) \ (B1) \]

Virtual

\[(B3) \ (B2) \ (A) \ (B1) \ (B2) \ (A) \ (B1) \ (A) \ (B2) \ (B3) \]
\[(B3) \ (B1) \ (B2) \ (A) \ (B3) \ (B2) \ (B3) \ (B1) \ (B1) \ (A) \]
\[(B3) \ (B2) \ (A) \ (B1) \ (A) \ (B2) \ (B3) \ (B1) \ (B2) \ (B3) \]
The electronic state is 1-A.

<table>
<thead>
<tr>
<th>Alpha occ. eigenvalues</th>
<th>-10.27800</th>
<th>-10.27800</th>
<th>-10.26203</th>
<th>-10.26146</th>
<th>-10.25906</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-10.25891</td>
<td>-10.25752</td>
<td>-10.25751</td>
<td>-10.25751</td>
<td>-10.25751</td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-10.25567</td>
<td>-10.25443</td>
<td>-10.25443</td>
<td>-10.25429</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-10.25429</td>
<td>-0.90256</td>
<td>-0.90216</td>
<td>-0.83478</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.78875</td>
<td>-0.78490</td>
<td>-0.78490</td>
<td>-0.74613</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.64785</td>
<td>-0.63874</td>
<td>-0.63871</td>
<td>-0.60736</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.55548</td>
<td>-0.50719</td>
<td>-0.50328</td>
<td>-0.48330</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.50328</td>
<td>-0.44778</td>
<td>-0.44780</td>
<td>-0.40998</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.36281</td>
<td>-0.31614</td>
<td>-0.28935</td>
<td>-0.27815</td>
<td></td>
</tr>
<tr>
<td>Alpha occ. eigenvalues</td>
<td>-0.27814</td>
<td>-0.25065</td>
<td>-0.22887</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>-0.06388</td>
<td>-0.03777</td>
<td>-0.01551</td>
<td>-0.01550</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.001053</td>
<td>0.01404</td>
<td>0.03103</td>
<td>0.03197</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.04256</td>
<td>0.04307</td>
<td>0.05426</td>
<td>0.05512</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.06352</td>
<td>0.06449</td>
<td>0.07098</td>
<td>0.07806</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.08635</td>
<td>0.09108</td>
<td>0.09805</td>
<td>0.09859</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.10605</td>
<td>0.11579</td>
<td>0.12049</td>
<td>0.12473</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.14357</td>
<td>0.14398</td>
<td>0.14470</td>
<td>0.15209</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.15743</td>
<td>0.15818</td>
<td>0.15998</td>
<td>0.16116</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.16678</td>
<td>0.16880</td>
<td>0.17757</td>
<td>0.17788</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.18165</td>
<td>0.19759</td>
<td>0.19930</td>
<td>0.21163</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.21617</td>
<td>0.21712</td>
<td>0.21919</td>
<td>0.22210</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.22808</td>
<td>0.23555</td>
<td>0.23797</td>
<td>0.24168</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.24959</td>
<td>0.24969</td>
<td>0.25520</td>
<td>0.26158</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.27063</td>
<td>0.27628</td>
<td>0.27714</td>
<td>0.28437</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.29509</td>
<td>0.29793</td>
<td>0.30177</td>
<td>0.30993</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.33511</td>
<td>0.33925</td>
<td>0.33966</td>
<td>0.34929</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.35914</td>
<td>0.36187</td>
<td>0.36527</td>
<td>0.36952</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.43511</td>
<td>0.45506</td>
<td>0.46477</td>
<td>0.48243</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.57401</td>
<td>0.57804</td>
<td>0.61220</td>
<td>0.61265</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.65495</td>
<td>0.67509</td>
<td>0.68232</td>
<td>0.70218</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.71263</td>
<td>0.71365</td>
<td>0.72547</td>
<td>0.72855</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.73450</td>
<td>0.73484</td>
<td>0.74835</td>
<td>0.75043</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.76034</td>
<td>0.76055</td>
<td>0.76418</td>
<td>0.77002</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.79061</td>
<td>0.79068</td>
<td>0.80221</td>
<td>0.81160</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.82196</td>
<td>0.84051</td>
<td>0.84638</td>
<td>0.86035</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.86903</td>
<td>0.88211</td>
<td>0.90341</td>
<td>0.92972</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.93481</td>
<td>0.95623</td>
<td>0.95913</td>
<td>0.97679</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>0.98856</td>
<td>0.99006</td>
<td>1.01688</td>
<td>1.01979</td>
<td></td>
</tr>
<tr>
<td>Alpha virt. eigenvalues</td>
<td>1.04045</td>
<td>1.04121</td>
<td>1.09417</td>
<td>1.09445</td>
<td>1.11090</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.12762</td>
<td>1.13142</td>
<td>1.15018</td>
<td>1.15726</td>
<td>1.16627</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.19808</td>
<td>1.19931</td>
<td>1.21162</td>
<td>1.21597</td>
<td>1.23852</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.23852</td>
<td>1.25259</td>
<td>1.27704</td>
<td>1.27908</td>
<td>1.30433</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.31949</td>
<td>1.33969</td>
<td>1.34261</td>
<td>1.36631</td>
<td>1.43325</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.43760</td>
<td>1.43881</td>
<td>1.44738</td>
<td>1.44745</td>
<td>1.45335</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.45450</td>
<td>1.47727</td>
<td>1.48268</td>
<td>1.48686</td>
<td>1.49541</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.49585</td>
<td>1.49640</td>
<td>1.50263</td>
<td>1.50281</td>
<td>1.60910</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.61007</td>
<td>1.62793</td>
<td>1.64021</td>
<td>1.67283</td>
<td>1.82364</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.83212</td>
<td>1.85493</td>
<td>1.85976</td>
<td>1.86128</td>
<td>1.90236</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.90344</td>
<td>1.90433</td>
<td>1.92671</td>
<td>1.92865</td>
<td>1.94901</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>1.96781</td>
<td>1.99156</td>
<td>2.00235</td>
<td>2.00699</td>
<td>2.01842</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.03295</td>
<td>2.06860</td>
<td>2.08174</td>
<td>2.08838</td>
<td>2.13388</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.15121</td>
<td>2.15459</td>
<td>2.15463</td>
<td>2.17505</td>
<td>2.17644</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.18770</td>
<td>2.20548</td>
<td>2.21308</td>
<td>2.21567</td>
<td>2.28318</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.30505</td>
<td>2.30505</td>
<td>2.31227</td>
<td>2.31382</td>
<td>2.32594</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.38814</td>
<td>2.43986</td>
<td>2.51639</td>
<td>2.54275</td>
<td>2.59165</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.59457</td>
<td>2.60753</td>
<td>2.63138</td>
<td>2.63977</td>
<td>2.65206</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.65212</td>
<td>2.65260</td>
<td>2.73103</td>
<td>2.76302</td>
<td>2.76323</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.76385</td>
<td>2.77573</td>
<td>2.77742</td>
<td>2.81583</td>
<td>2.86200</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>2.88081</td>
<td>2.98958</td>
<td>3.03653</td>
<td>3.08749</td>
<td>3.24271</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>3.33041</td>
<td>3.34172</td>
<td>3.41812</td>
<td>3.51391</td>
<td>3.75089</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>4.22958</td>
<td>4.27193</td>
<td>4.27677</td>
<td>4.27774</td>
<td>4.28725</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>4.29495</td>
<td>4.31940</td>
<td>4.39618</td>
<td>4.42254</td>
<td>4.43865</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>4.44029</td>
<td>4.58599</td>
<td>4.64041</td>
<td>4.81183</td>
<td>4.90466</td>
</tr>
<tr>
<td>Alpha virt. eigenvalues --</td>
<td>5.62494</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gaussian 03: x86-Linux-G03RevB.04 2-Jun-2003
7-Nov-2008

#t td(Nst=40,conver=3) pbe1pbe/6-31+G*

1,4-Diphenylbuta-1,3-diyn, D=90 (based on pbe1pbe/6-31G* D2h geo.)

Framework group D2D[C2(HCCCC.CCCCH),2SGD(C4H4)]

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms) X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.679461</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.679461</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.899660</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.899660</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>3.318498</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-3.318498</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.211722</td>
<td>0.000000</td>
<td>4.030916</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-1.211722</td>
<td>-4.030916</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-1.211722</td>
<td>4.030916</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>-1.211722</td>
<td>0.000000</td>
<td>-4.030916</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>1.206087</td>
<td>5.419091</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>1.206087</td>
<td>0.000000</td>
<td>-5.419091</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-1.206087</td>
<td>5.419091</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>-1.206087</td>
<td>0.000000</td>
<td>-5.419091</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>6.117221</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-6.117221</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>2.148075</td>
<td>3.481442</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>2.148075</td>
<td>0.000000</td>
<td>-3.481442</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-2.148075</td>
<td>3.481442</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>-2.148075</td>
<td>0.000000</td>
<td>-3.481442</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>2.148474</td>
<td>5.959837</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>2.148474</td>
<td>0.000000</td>
<td>-5.959837</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-2.148474</td>
<td>5.959837</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>-2.148474</td>
<td>0.000000</td>
<td>-5.959837</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>7.203732</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-7.203732</td>
</tr>
</tbody>
</table>

324 basis functions, 552 primitive gaussians, 324 cartesian basis functions
53 alpha electrons 53 beta electrons

SCF Done: E(RPBE+HF-PBE) = -614.896422965 A.U. after 24 cycles
Convg = 0.5166D-08 -V/T = 2.0089

Excited states from <AA,BB:AA,BB> singles matrix:

Ground to excited state Transition electric dipole moments (Au):

<table>
<thead>
<tr>
<th>state</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Osc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-4.3538</td>
<td>2.1837</td>
</tr>
<tr>
<td>5</td>
<td>-0.0144</td>
<td>-0.0427</td>
<td>0.0000</td>
<td>0.0002</td>
</tr>
<tr>
<td>6</td>
<td>-0.0427</td>
<td>0.0144</td>
<td>0.0000</td>
<td>0.0002</td>
</tr>
<tr>
<td>7</td>
<td>0.0417</td>
<td>-0.0201</td>
<td>0.0000</td>
<td>0.0003</td>
</tr>
<tr>
<td>8</td>
<td>0.0201</td>
<td>0.0417</td>
<td>0.0000</td>
<td>0.0003</td>
</tr>
<tr>
<td>State</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>Osc.</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.7425</td>
<td>2.1270</td>
</tr>
<tr>
<td>5</td>
<td>0.0019</td>
<td>0.0056</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>6</td>
<td>0.0056</td>
<td>-0.0019</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
<tr>
<td>7</td>
<td>0.0013</td>
<td>-0.0066</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.0006</td>
<td>0.0013</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td>0.0009</td>
<td>-0.0023</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>-0.0023</td>
<td>-0.0009</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>11</td>
<td>-0.1036</td>
<td>-0.1696</td>
<td>0.0000</td>
<td>0.1254</td>
</tr>
<tr>
<td>12</td>
<td>-0.1696</td>
<td>0.1036</td>
<td>0.0000</td>
<td>0.1254</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>15</td>
<td>-0.0060</td>
<td>0.0070</td>
<td>0.0000</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>-0.0070</td>
<td>-0.0060</td>
<td>0.0000</td>
<td>0.0003</td>
</tr>
<tr>
<td>17</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0068</td>
<td>0.0001</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>0.0308</td>
<td>-0.0425</td>
<td>0.0000</td>
<td>0.0081</td>
</tr>
<tr>
<td>22</td>
<td>0.0425</td>
<td>0.0308</td>
<td>0.0000</td>
<td>0.0081</td>
</tr>
<tr>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.6907</td>
<td>1.3290</td>
</tr>
<tr>
<td>25</td>
<td>-0.0301</td>
<td>0.0073</td>
<td>0.0000</td>
<td>0.0027</td>
</tr>
<tr>
<td>26</td>
<td>-0.0073</td>
<td>-0.0301</td>
<td>0.0000</td>
<td>0.0027</td>
</tr>
<tr>
<td>27</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>28</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>29</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>30</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0067</td>
<td>0.0001</td>
</tr>
<tr>
<td>31</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Ground to excited state transition velocity dipole Moments (Au):

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011
Excitation energies and oscillator strengths:

Term symbols*) and MO parentage [in brackets] added by J. Spanget-Larsen. The notation [i,-j] indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the i'th highest occupied to the j'th lowest unoccupied MO.

*) In general, term symbols for the D2d conformation were not properly derived by the GAUSSIAN program. The symbols in brackets listed below were determined by correlation with corresponding results for slightly perturbed geometries of D2 and C2v symmetry, for which the GAUSSIAN symmetry analysis produces the correct symbols.

Excited State 1: Singlet-[B1] 30.20061 1000/cm 331.12 nm f=0.0000
52 -> 54 0.47425 45% [2,-1]
53 -> 55 0.47425 45% [1,-2]

Excited State 2: Singlet-[A2] 30.91199 1000/cm 323.50 nm f=0.0000
52 -> 54 0.48949 48% [2,-1]
53 -> 55 -0.48949 48% [1,-2]

Excited State 3: Singlet-[A1] 33.00823 1000/cm 302.96 nm f=0.0000
48 -> 55 0.12747
49 -> 54 0.12747
52 -> 55 0.45271 41% [2,-2]
52 -> 61 0.11546
53 -> 54 0.45271 41% [1,-1]
53 -> 60 0.11546

Excited State 4: Singlet-[B2] 37.92497 1000/cm 263.68 nm f=2.1837
52 -> 55 0.43420 38% [2,-2]
53 -> 55 -0.43420 38% [1,-2]

Excited State 5: Singlet-E 39.25418 1000/cm 254.75 nm f=0.0002
50 -> 54 0.10878
50 -> 55 0.32353 21% [4,-2]
51 -> 54 -0.10878
51 -> 55 0.32356 21% [3,-2]
52 -> 56 0.34692 24% [2,-3]
52 -> 57 0.34358 24% [2,-4]
53 -> 56 0.11664
53 -> 57 -0.11552

Excited State 6: Singlet-E 39.25418 1000/cm 254.75 nm f=0.0002
50 -> 54 0.32353 21% [4,-1]
50 -> 55 -0.10878
51 -> 54 -0.32356 21% [3,-1]
51 -> 55 -0.10878
52 -> 56 -0.11664
52 -> 57 -0.11552
53 -> 56 0.34692 24% [1,-3]
53 -> 57 -0.34358 24% [1,-4]

Excited State 7: Singlet-E 43.11757 1000/cm 231.93 nm f=0.0003
52 -> 56 -0.21529
52 -> 57 0.21483
53 -> 56 0.44534 40% [1,-3]
53 -> 57 0.44440 39% [1,-4]

Excited State 8: Singlet-E 43.11757 1000/cm 231.93 nm f=0.0003
Excited State 9: Singlet-E 44.26772 1000/cm 225.90 nm f=0.0000
50 -> 54 -0.18611
50 -> 55 0.45994 42% [4,-2]
51 -> 54 -0.18606
51 -> 55 -0.45983 42% [3,-2]

Excited State 10: Singlet-E 44.26772 1000/cm 225.90 nm f=0.0000
50 -> 54 0.45994 42% [4,-1]
50 -> 55 0.18611
51 -> 54 0.45983 42% [3,-1]
51 -> 55 -0.18606

Excited State 11: Singlet-E 46.07843 1000/cm 217.02 nm f=0.1203
48 -> 56 0.10458
48 -> 57 0.10553
50 -> 54 -0.16493
50 -> 55 -0.27002 15% [4,-2]
51 -> 54 0.16552
51 -> 55 -0.27100 15% [3,-2]
52 -> 56 0.26721 14% [2,-3]
52 -> 57 0.27207 15% [2,-4]
53 -> 56 0.16321
53 -> 57 -0.16618

Excited State 12: Singlet-E 46.07843 1000/cm 217.02 nm f=0.1203
49 -> 56 0.10458
49 -> 57 -0.10553
50 -> 54 -0.27002 15% [4,-1]
50 -> 55 0.16493
51 -> 54 0.27100 15% [3,-1]
51 -> 55 0.16552
52 -> 56 -0.16321
52 -> 57 -0.16618
53 -> 56 0.26721 14% [1,-3]
53 -> 57 -0.27207 15% [1,-4]

Excited State 13: Singlet-[A2] 46.35911 1000/cm 215.71 nm f=0.0000
46 -> 54 0.11383
47 -> 55 -0.11383
48 -> 54 0.46643 44% [6,-1]
49 -> 55 -0.46643 44% [5,-2]

Excited State 14: Singlet-[B1] 46.58414 1000/cm 214.66 nm f=0.0000
48 -> 54 0.47140 44% [6,-1]
49 -> 55 0.47140 44% [5,-2]
52 -> 54 -0.10399
53 -> 55 -0.10399

Excited State 15: Singlet-E 47.74639 1000/cm 209.44 nm f=0.0000
52 -> 58 0.39060 31% [2,-5]
52 -> 59 0.20061
52 -> 62 0.10059
53 -> 58 -0.46026 42% [1,-5]
53 -> 59 0.23639 11% [1,-6]
53 -> 62 -0.11854

Excited State 16: Singlet-E 47.74639 1000/cm 209.44 nm f=0.0000
52 -> 58 0.46026 42% [2,-5]
52 -> 59 0.23639 11% [2,-6]
52 -> 62 0.11854
Excited State 17: Singlet-[A1] 48.51826 1000/cm 206.11 nm f=0.0000
48 -> 55 0.42849 37% [6,-2]
49 -> 54 0.42846 37% [5,-1]
50 -> 56 0.20433
51 -> 57 0.20277

Excited State 18: Singlet-[B2] 48.52794 1000/cm 206.07 nm f=0.0000
48 -> 55 0.41003 34% [6,-2]
49 -> 54 -0.41005 34% [5,-1]
52 -> 61 -0.26805 14% [2,-8]
53 -> 60 0.26805 14% [1,-7]

Excited State 19: Singlet-[B1] 48.71506 1000/cm 205.27 nm f=0.0000
52 -> 60 0.46535 43% [2,-7]
53 -> 61 0.46535 43% [1,-8]

Excited State 20: Singlet-[A2] 49.01832 1000/cm 204.01 nm f=0.0000
52 -> 60 -0.46859 44% [2,-7]
53 -> 61 0.46859 44% [1,-8]

Excited State 21: Singlet-E 49.94264 1000/cm 200.23 nm f=0.0070
52 -> 58 -0.14350
52 -> 59 0.35340 25% [2,-6]
52 -> 62 -0.14492
53 -> 58 0.19803
53 -> 59 0.48770 48% [1,-6]
53 -> 62 0.19999

Excited State 22: Singlet-E 49.94264 1000/cm 200.23 nm f=0.0070
52 -> 58 -0.19803
52 -> 59 0.48770 48% [2,-6]
52 -> 62 -0.19999
53 -> 58 -0.14350
53 -> 59 -0.35340 25% [1,-6]
53 -> 62 -0.14492

Excited State 23: Singlet-[A1] 49.95715 1000/cm 200.17 nm f=0.0000
50 -> 56 0.14850
51 -> 57 0.14683
52 -> 61 0.45323 41% [2,-8]
53 -> 60 0.45323 41% [1,-7]

Excited State 24: Singlet-B2 52.51393 1000/cm 190.42 nm f=1.3648
50 -> 57 0.39915 32% [4,-4]
51 -> 56 0.40903 33% [3,-3]
52 -> 61 0.18997
53 -> 60 -0.18997

Excited State 25: Singlet-E 52.77606 1000/cm 189.48 nm f=0.0028
52 -> 58 -0.24328 12% [2,-5]
52 -> 59 0.14223
52 -> 62 0.58450 68% [2,-9]
52 -> 65 -0.17812
53 -> 62 -0.14082

Excited State 26: Singlet-E 52.77606 1000/cm 189.48 nm f=0.0028
52 -> 62 0.14082
53 -> 58 -0.24328 12% [1,-5]
53 -> 59 -0.14223
53 -> 62 0.58450 68% [1,-9]
53 -> 65 0.17812
<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet</th>
<th>Energy (1000/cm)</th>
<th>Wavelength (nm)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>27: B1</td>
<td>53.06561</td>
<td>188.45</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>52 -> 63</td>
<td>0.48748</td>
<td>48% [2,-10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 64</td>
<td>-0.48748</td>
<td>48% [1,-11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28: A2</td>
<td>53.08739</td>
<td>188.37</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>52 -> 63</td>
<td>0.48833</td>
<td>48% [2,-10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 64</td>
<td>-0.48833</td>
<td>48% [1,-11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29: A1</td>
<td>54.59967</td>
<td>183.15</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>50 -> 56</td>
<td>0.50408</td>
<td>51% [4,-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 57</td>
<td>-0.49596</td>
<td>49% [3,-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30: B2</td>
<td>54.59967</td>
<td>183.15</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>50 -> 57</td>
<td>0.50244</td>
<td>50% [4,-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 56</td>
<td>-0.49709</td>
<td>49% [3,-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31: A1</td>
<td>54.68517</td>
<td>182.87</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>52 -> 64</td>
<td>0.47705</td>
<td>46% [2,-11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 68</td>
<td>0.12847</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 63</td>
<td>0.47706</td>
<td>46% [1,-10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 67</td>
<td>0.12843</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32: B2</td>
<td>54.72146</td>
<td>182.74</td>
<td>0.0038</td>
<td></td>
</tr>
<tr>
<td>52 -> 64</td>
<td>-0.47114</td>
<td>44% [2,-11]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 68</td>
<td>-0.12217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 63</td>
<td>0.47113</td>
<td>44% [1,-10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 67</td>
<td>0.12220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33: B2</td>
<td>55.00376</td>
<td>181.80</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>50 -> 59</td>
<td>0.47221</td>
<td>45% [4,-6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 58</td>
<td>0.51096</td>
<td>52% [3,-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34: B1</td>
<td>55.00618</td>
<td>181.80</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>50 -> 58</td>
<td>0.51088</td>
<td>52% [4,-5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 59</td>
<td>0.47221</td>
<td>45% [3,-6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35: E</td>
<td>55.72885</td>
<td>179.44</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>48 -> 56</td>
<td>-0.11275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 -> 57</td>
<td>-0.11142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 59</td>
<td>0.10372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 62</td>
<td>-0.12010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 65</td>
<td>0.62223</td>
<td>77% [1,-12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 66</td>
<td>-0.17062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36: E</td>
<td>55.72885</td>
<td>179.44</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>49 -> 56</td>
<td>0.11275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 -> 57</td>
<td>-0.11142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 59</td>
<td>0.10372</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 62</td>
<td>0.12010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 65</td>
<td>0.62223</td>
<td>77% [2,-12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 66</td>
<td>0.17061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37: A1</td>
<td>56.2886</td>
<td>177.65</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>48 -> 55</td>
<td>-0.14239</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 -> 54</td>
<td>-0.14229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 -> 56</td>
<td>0.36149</td>
<td>26% [4,-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 -> 57</td>
<td>0.37446</td>
<td>28% [3,-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52 -> 61</td>
<td>-0.13518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53 -> 60</td>
<td>-0.13490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38: E</td>
<td>56.29021</td>
<td>177.65</td>
<td>0.0445</td>
<td></td>
</tr>
<tr>
<td>48 -> 56</td>
<td>0.28082</td>
<td>16% [6,-3]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 -> 57</td>
<td>0.27406</td>
<td>15% [6,-4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 -> 56</td>
<td>-0.27508</td>
<td>15% [5,-3]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011
49 -> 57 0.26846 14% [5,-4]
50 -> 60 -0.17199
50 -> 61 0.17558
51 -> 60 0.17371
51 -> 61 0.17733
52 -> 65 0.11432
53 -> 65 0.11670

Excited State 39: Singlet-E 56.29021 1000/cm 177.65 nm f=0.0445
48 -> 56 0.27508 15% [6,-3]
48 -> 57 0.26846 14% [6,-4]
49 -> 56 0.28081 16% [5,-3]
49 -> 57 -0.27407 15% [5,-4]
50 -> 60 0.17558
50 -> 61 0.17199
51 -> 60 -0.17734
51 -> 61 0.17371
52 -> 65 -0.11670
53 -> 65 0.11432

Excited State 40: Singlet-[A2] 56.91932 1000/cm 175.69 nm f=0.0000
46 -> 54 0.45203 41% [8,-1]
47 -> 55 -0.45213 41% [7,-2]
48 -> 54 -0.10242
49 -> 55 0.10243

Orbital symmetries:

Occupied
(B2) (A1) (E) (E) (E) (E) (B1) (A2) (E)
(E)

Virtual
(E) (E) (B1) (A2) (A1) (B2) (E) (E) (A1) (E)
(B2) (A1) (E) (E) (E) (B2) (B2) (A1) (E) (E)
(B1) (A2) (A1) (E) (E) (B2) (E) (E) (B1) (B2)
(E) (B2) (A1) (E) (E) (B1) (A2) (A1) (B2) (E)
(E) (A1) (E) (E) (E) (B2) (B2) (E) (E) (E)
(B2) (B2) (E) (E) (E) (E) (E) (E) (A2) (A1)
(A2) (E) (B2) (A1) (B2) (E) (E) (B1) (B2)
(A1) (B2) (A1) (E) (E) (B2) (A2) (E) (E) (E)
(A1) (A2) (E) (E) (E) (E) (E) (E) (E) (E)
(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)

The electronic state is 1-A1.
Alpha occ. eigenvalues	-0.64780	-0.63868	-0.63868	-0.60725	-0.56528
Alpha occ. eigenvalues	-0.55540	-0.50716	-0.50324	-0.48303	-0.48303
Alpha occ. eigenvalues	-0.45980	-0.45835	-0.44775	-0.44775	-0.40802
Alpha occ. eigenvalues	-0.40802	-0.38131	-0.38063	-0.37379	-0.37379
Alpha occ. eigenvalues	-0.35918	-0.35918	-0.30407	-0.30407	-0.27812
Alpha virt. eigenvalues	-0.05380	-0.05380	-0.01558	-0.01539	0.01090
Alpha virt. eigenvalues	0.01262	0.02753	0.02753	0.03156	0.03320
Alpha virt. eigenvalues	0.03320	0.04141	0.02753	0.03156	0.03320
Alpha virt. eigenvalues	0.03575	0.05266	0.05266	0.06689	0.06689
Alpha virt. eigenvalues	0.04162	0.04526	0.04526	0.06327	0.06327
Alpha virt. eigenvalues	0.05501	0.05732	0.05732	0.06124	0.06124
Alpha virt. eigenvalues	0.06436	0.06484	0.06807	0.07109	0.07109
Alpha virt. eigenvalues	0.07126	0.07125	0.07166	0.07166	0.07280
Alpha virt. eigenvalues	0.07291	0.07377	0.07400	0.07488	0.07488
Alpha virt. eigenvalues	0.07577	0.07586	0.07586	0.07618	0.07703
Alpha virt. eigenvalues	0.07735	0.07893	0.07893	0.08058	0.08058
Alpha virt. eigenvalues	0.08192	0.08238	0.08238	0.08423	0.08618
Alpha virt. eigenvalues	0.08652	0.08719	0.08719	0.09210	0.09210
Alpha virt. eigenvalues	0.09258	0.09330	0.09573	0.09738	0.09769
Alpha virt. eigenvalues	0.09766	0.09821	0.10037	0.10218	0.10217
Alpha virt. eigenvalues	1.04053	1.04053	1.06637	1.06637	1.10134
Alpha virt. eigenvalues	1.10134	1.12798	1.12964	1.15015	1.16477
Alpha virt. eigenvalues	1.19960	1.20351	1.20351	1.21156	1.23288
Alpha virt. eigenvalues	1.23846	1.23862	1.25463	1.28312	1.29149
Alpha virt. eigenvalues	1.29149	1.32003	1.34403	1.34652	1.41041
Alpha virt. eigenvalues	1.41041	1.43547	1.44254	1.44254	1.44454
Alpha virt. eigenvalues	1.44997	1.46091	1.47992	1.47992	1.49026
Alpha virt. eigenvalues	1.49026	1.49354	1.50093	1.50112	1.50281
Alpha virt. eigenvalues	1.59318	1.62712	1.65140	1.65140	1.67615
Alpha virt. eigenvalues	1.82575	1.84392	1.84751	1.84751	1.86491
Alpha virt. eigenvalues	1.90333	1.90333	1.91604	1.92825	1.93218
Alpha virt. eigenvalues	1.94642	1.97057	1.98874	2.00417	2.00417
Alpha virt. eigenvalues	2.01169	2.04454	2.07493	2.07493	2.08573
Alpha virt. eigenvalues	2.13390	2.15395	2.15524	2.16331	2.16331
Alpha virt. eigenvalues	2.18986	2.20462	2.21029	2.21029	2.21775
Alpha virt. eigenvalues	2.29712	2.29712	2.30380	2.30380	2.31492
Alpha virt. eigenvalues	2.31492	2.39113	2.51111	2.51111	2.52199
Alpha virt. eigenvalues	2.54109	2.59501	2.60780	2.63391	2.63391
Alpha virt. eigenvalues	2.65195	2.65232	2.65236	2.73169	2.75630
Alpha virt. eigenvalues	2.76615	2.76615	2.78115	2.81554	2.83065
Alpha virt. eigenvalues	2.83065	2.88118	3.02425	3.02425	3.03634
Alpha virt. eigenvalues	3.02573	3.02573	3.30611	3.41792	3.51468
Alpha virt. eigenvalues	3.77437	4.23486	4.27334	4.27679	4.27992
Alpha virt. eigenvalues	4.27992	4.32067	4.33905	4.39882	4.42266
Alpha virt. eigenvalues	4.43642	4.43642	4.59740	4.64075	4.81139
Alpha virt. eigenvalues	4.90568	5.64378			
DPDA, D$_{2h}$ ($\Phi = 0^\circ$)
PBE1PBE/6-31+G* MO energies (eV)

(-5) 2 a_u \(-0.42\)

(-4) 2 b_{1g} \(-0.42\)

(-3) 9 b_{2u} \(-0.44\)

(-2) 4 b_{2g} \(-0.48\)

(-1) 4 b_{3u} \(-1.83\) [LUMO]

(1) 3 b_{2g} \(-6.14\) [HOMO]

(2) 8 b_{3g} \(-7.09\)

(3) 1 b_{1g} \(-7.57\)

(4) 1 a_u \(-7.57\)

(5) 3 b_{3u} \(-7.60\)
DPDA, D₂ (Φ = 45°)
PBE1PBE/6-31+G* MO energies (eV)

(-4) 16 b₁ −0.42 (1) 11 b₂ −6.23 [HOMO]

(-3) 17 a −0.42 (2) 11 b₃ −6.82

(-2) 12 b₂ −1.03 (3) 15 b₁ −7.57

(-1) 12 b₃ −1.74 (4) 16 a −7.57 [LUMO]
DPDA, D$_{2d}$ ($\Phi = 90^\circ$)
PBE1PBE/6-31+G* MO energies (eV)

(-4) 2 b_1 -0.42

(1) 11 e -6.47
[HOMO]

(-3) 2 a_2 -0.42

(2) 11 e -6.47
[HOMO]

(-2) 12 e -1.46
[LUMO]

(3) 1 b_1 -7.57

(-1) 12 e -1.46
[LUMO]

(4) 1 a_2 -7.57
Frontier MO energies as a function of dihedral angle Φ
#t td(Nst=40,conver=3) pbe1pbe/6-31+G*

1,4-Diphenylbuta-1,3-diyne (pbe1pbe/6-31+G*//~6-31G*)
Non-linear diyne axis, in-plane distortion

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Angstroms)</th>
<th>Y (Angstroms)</th>
<th>Z (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-0.679401</td>
<td>-0.289764</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>0.679401</td>
<td>-0.289764</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-1.897728</td>
<td>-0.225917</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>1.897728</td>
<td>-0.225917</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-3.308756</td>
<td>-0.077610</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>3.308756</td>
<td>-0.077610</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-3.890554</td>
<td>1.201820</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>4.143853</td>
<td>-1.208097</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-4.143853</td>
<td>-1.208097</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>3.890554</td>
<td>1.201820</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-5.271627</td>
<td>1.341309</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>5.523747</td>
<td>-1.057391</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-5.523747</td>
<td>-1.057391</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>5.271627</td>
<td>1.341309</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>-6.091906</td>
<td>0.214940</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>0.000000</td>
<td>6.091906</td>
<td>0.214940</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-3.246255</td>
<td>2.075551</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>3.695338</td>
<td>-2.196604</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-3.695338</td>
<td>-2.196604</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>3.246255</td>
<td>2.075551</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-5.710899</td>
<td>2.335052</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>6.160035</td>
<td>-1.938084</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-6.160035</td>
<td>-1.938084</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>5.710899</td>
<td>2.335052</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>-7.172453</td>
<td>0.328512</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0.000000</td>
<td>7.172453</td>
<td>0.328512</td>
</tr>
</tbody>
</table>

324 basis functions, 552 primitive gaussians, 324 cartesian basis functions
53 alpha electrons 53 beta electrons

Excited states from <AA,BB:AA,BB> singles matrix:

Ground to excited state transition electric dipole moments (Au):
Excitation energies and oscillator strengths:
→ MO parentage [in brackets] added by J. Spanget-Larsen. The notation \([i, -j]\) indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the \(i\)’th highest occupied to the \(j\)’th lowest unoccupied MO.

Excited State 1: Singlet-B2 29.72474 1000/cm \(f=0.9253\)
52 -> 56 -0.21581
53 -> 54 0.67039 90% \([1, -1]\)

Excited State 2: Singlet-A2 31.24348 1000/cm \(f=0.0000\)
52 -> 54 0.68719 94% \([2, -1]\)
53 -> 56 -0.12558

Excited State 3: Singlet-A2 33.92286 1000/cm \(f=0.0000\)
48 -> 56 0.10105
52 -> 54 0.12914
53 -> 56 0.68596 94% \([1, -3]\)

Excited State 4: Singlet-B2 38.05402 1000/cm \(f=0.0000\)
49 -> 58 -0.13516
50 -> 54 0.45603 42% \([4, -1]\)
51 -> 55 0.13730
53 -> 57 0.50265 51% \([1, -4]\)
<table>
<thead>
<tr>
<th>Excited State</th>
<th>Singlet</th>
<th>E (cm$^{-1}$)</th>
<th>f</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>5: Singlet-A1</td>
<td>38.06774</td>
<td>0.0002</td>
<td></td>
<td>49 -> 57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13591</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13764</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.45780</td>
<td>42% [3,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50015</td>
<td>50% [1,-5]</td>
</tr>
<tr>
<td>6: Singlet-A1</td>
<td>40.11316</td>
<td>0.0001</td>
<td></td>
<td>49 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.42050</td>
<td>35% [5,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.56252</td>
<td>63% [1,-2]</td>
</tr>
<tr>
<td>7: Singlet-B2</td>
<td>42.85544</td>
<td>0.0012</td>
<td></td>
<td>50 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50801</td>
<td>52% [4,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.47562</td>
<td>45% [1,-4]</td>
</tr>
<tr>
<td>8: Singlet-A1</td>
<td>42.92884</td>
<td>0.0011</td>
<td></td>
<td>51 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50569</td>
<td>51% [3,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.47695</td>
<td>45% [1,-5]</td>
</tr>
<tr>
<td>9: Singlet-A1</td>
<td>43.67168</td>
<td>0.0021</td>
<td></td>
<td>49 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.53712</td>
<td>58% [5,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13758</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13830</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.39481</td>
<td>31% [1,-2]</td>
</tr>
<tr>
<td>10: Singlet-B1</td>
<td>44.35483</td>
<td>0.0000</td>
<td></td>
<td>47 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15058</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.68459</td>
<td>94% [2,-2]</td>
</tr>
<tr>
<td>11: Singlet-A2</td>
<td>45.35899</td>
<td>0.0000</td>
<td></td>
<td>53 -> 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.67556</td>
<td>91% [1,-6]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15264</td>
<td></td>
</tr>
<tr>
<td>12: Singlet-B2</td>
<td>45.7905</td>
<td>1.3085</td>
<td></td>
<td>48 -> 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.36935</td>
<td>27% [6,-1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50763</td>
<td>52% [2,-3]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.20020</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.20044</td>
<td></td>
</tr>
<tr>
<td>13: Singlet-A2</td>
<td>46.80514</td>
<td>0.0000</td>
<td></td>
<td>52 -> 57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.70337</td>
<td>99% [2,-4]</td>
</tr>
<tr>
<td>14: Singlet-B1</td>
<td>46.84788</td>
<td>0.0014</td>
<td></td>
<td>52 -> 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.69949</td>
<td>98% [2,-5]</td>
</tr>
<tr>
<td>15: Singlet-B1</td>
<td>47.03178</td>
<td>0.00034</td>
<td></td>
<td>49 -> 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.11541</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.68504</td>
<td>94% [1,-7]</td>
</tr>
<tr>
<td>16: Singlet-B1</td>
<td>48.07949</td>
<td>0.0001</td>
<td></td>
<td>46 -> 56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12653</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.68526</td>
<td>94% [5,-3]</td>
</tr>
<tr>
<td>17: Singlet-A2</td>
<td>49.97893</td>
<td>0.0000</td>
<td></td>
<td>53 -> 59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.16899</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.63252</td>
<td>80% [1,-8]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.20634</td>
<td></td>
</tr>
<tr>
<td>18: Singlet-A1</td>
<td>50.12169</td>
<td>0.0011</td>
<td></td>
<td>48 -> 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13347</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.41884</td>
<td>35% [5,-4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50664</td>
<td>51% [4,-2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12316</td>
<td></td>
</tr>
<tr>
<td>19: Singlet-B2</td>
<td>50.12975</td>
<td>0.0000</td>
<td></td>
<td>48 -> 58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.13347</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.41884</td>
<td>35% [5,-4]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50664</td>
<td>51% [4,-2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.15717</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12316</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td>Excited State</td>
<td>Singlet</td>
<td>Energy (1000/cm)</td>
<td>Frequency (f)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>20</td>
<td>Singlet-A2</td>
<td>50.49754</td>
<td>1000/cm</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>Singlet-B1</td>
<td>50.49916</td>
<td>1000/cm</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>Singlet-A2</td>
<td>50.61772</td>
<td>1000/cm</td>
<td>0.0000</td>
</tr>
<tr>
<td>23</td>
<td>Singlet-B2</td>
<td>50.68466</td>
<td>1000/cm</td>
<td>0.1758</td>
</tr>
<tr>
<td>24</td>
<td>Singlet-B1</td>
<td>51.67914</td>
<td>1000/cm</td>
<td>0.0001</td>
</tr>
<tr>
<td>25</td>
<td>Singlet-B2</td>
<td>51.73318</td>
<td>1000/cm</td>
<td>0.3990</td>
</tr>
<tr>
<td>26</td>
<td>Singlet-B2</td>
<td>52.39859</td>
<td>1000/cm</td>
<td>0.0000</td>
</tr>
<tr>
<td>27</td>
<td>Singlet-B1</td>
<td>52.55586</td>
<td>1000/cm</td>
<td>0.0000</td>
</tr>
<tr>
<td>28</td>
<td>Singlet-B1</td>
<td>53.38743</td>
<td>1000/cm</td>
<td>0.0048</td>
</tr>
<tr>
<td>29</td>
<td>Singlet-B2</td>
<td>53.99718</td>
<td>1000/cm</td>
<td>1.2366</td>
</tr>
<tr>
<td>30</td>
<td>Singlet-A1</td>
<td>54.26092</td>
<td>1000/cm</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011
Excited State 31: Singlet-B2 54.59484 1000/cm f=0.0007
50 -> 57 -0.49389 49% [4,-4]
51 -> 58 0.50529 51% [3,-5]

Excited State 32: Singlet-A1 54.59645 1000/cm f=0.0001
50 -> 58 0.52566 55% [4,-5]
51 -> 57 -0.47159 44% [3,-4]

Excited State 33: Singlet-A2 55.00537 1000/cm f=0.0000
50 -> 58 0.52566 55% [4,-5]
51 -> 57 -0.47159 44% [3,-4]

Excited State 34: Singlet-B1 55.01908 1000/cm f=0.0000
50 -> 60 0.45551 41% [4,-7]
51 -> 59 0.52732 56% [3,-6]

Excited State 35: Singlet-A1 55.05457 1000/cm f=0.1049
49 -> 57 -0.30629 19% [5,-4]
50 -> 55 -0.26325 14% [4,-2]
52 -> 60 0.55597 62% [2,-7]
52 -> 64 -0.11823

Excited State 36: Singlet-B2 55.42720 1000/cm f=0.0091
49 -> 58 0.53253 57% [5,-5]
51 -> 59 0.42609 36% [3,-6]
52 -> 59 0.10261

Excited State 37: Singlet-A2 55.52479 1000/cm f=0.0000
48 -> 56 -0.12748
50 -> 59 -0.11514
51 -> 60 -0.10493
53 -> 62 -0.10356
53 -> 66 0.64604 83% [1,-13]
53 -> 67 0.10759

Excited State 38: Singlet-A1 55.60787 1000/cm f=0.3186
49 -> 57 0.43602 38% [5,-4]
50 -> 55 0.34572 24% [4,-2]
52 -> 60 0.41114 34% [2,-7]

Excited State 39: Singlet-A2 55.95227 1000/cm f=0.0000
53 -> 67 0.66896 90% [1,-14]

Excited State 40: Singlet-B2 56.39103 1000/cm f=0.0293
49 -> 55 -0.15491
50 -> 57 0.15269
51 -> 58 0.15388
53 -> 65 0.18201
53 -> 69 0.60707 74% [1,-16]
53 -> 74 0.11150

Normal termination of Gaussian 03 at Tue Apr 12 14:02:43 2011.
Gaussian 03: x86-Linux-G03RevB.04 2-Jun-2003

11-Apr-2011

#t td(Nst=40,conver=3) sym=loose pbe1pbe/6-31+G*

1,4-Diphenylbuta-1,3-diyne (pbe1pbe/6-31+G*/-6-31G*)
Non-linear diyne axis, out-of-plane distortion

Standard orientation:

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1.211691</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>-1.211691</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>-1.211692</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>1.211692</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>1.206042</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0</td>
<td>-1.206042</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>0</td>
<td>-1.206066</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0</td>
<td>1.206066</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>0</td>
<td>2.147989</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>2.147989</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>0</td>
<td>2.147980</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>0</td>
<td>2.147980</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>0</td>
<td>2.148417</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>0</td>
<td>-2.148417</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>0</td>
<td>-2.148451</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0</td>
<td>2.148451</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0</td>
<td>0.0000000</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>0</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

324 basis functions, 552 primitive gaussians, 324 cartesian basis functions
53 alpha electrons 53 beta electrons

Excited states from <AA,BB:AA,BB> singles matrix:

Excited states from <AA,BB:AA,BB> singles matrix:

Ground to excited state transition electric dipole moments (Au):

<table>
<thead>
<tr>
<th>state</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Dip. S.</th>
<th>Osc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>3.1983</td>
<td>0.0000</td>
<td>10.2293</td>
<td>0.9229</td>
</tr>
<tr>
<td>2</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>-0.0437</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0019</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>6</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0360</td>
<td>0.0013</td>
<td>0.0002</td>
</tr>
<tr>
<td>7</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>8</td>
<td>-0.9659</td>
<td>0.0002</td>
<td>0.0000</td>
<td>0.9330</td>
<td>0.1216</td>
</tr>
<tr>
<td>9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.2522</td>
<td>0.0636</td>
<td>0.0004</td>
</tr>
<tr>
<td>10</td>
<td>0.0203</td>
<td>-0.0006</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0001</td>
</tr>
<tr>
<td>11</td>
<td>0.0000</td>
<td>0.1778</td>
<td>0.0000</td>
<td>0.0316</td>
<td>0.0004</td>
</tr>
<tr>
<td>12</td>
<td>0.0001</td>
<td>3.0300</td>
<td>0.0000</td>
<td>9.1806</td>
<td>1.2769</td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>0.2766</td>
<td>0.0000</td>
<td>0.0765</td>
<td>0.0109</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>0.0000</td>
<td>-0.1093</td>
<td>0.0120</td>
<td>0.0017</td>
</tr>
<tr>
<td>15</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1479</td>
<td>0.0219</td>
<td>0.0031</td>
</tr>
<tr>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>17</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>21</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>22</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>23</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>24</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>25</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>26</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>27</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>28</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>29</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Excitation energies and oscillator strengths:

→ MO parentage [in brackets] added by J. Spanget-Larsen. The notation [(i,-j)] indicates an excited singlet configuration derived from the ground configuration by promotion of an electron from the i'th highest occupied to the j'th lowest unoccupied MO.

Excited State 1: Singlet-B 29.70216 1000/cm f=0.9229

<table>
<thead>
<tr>
<th>MO</th>
<th>52</th>
<th>56</th>
<th>57</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>-0.17316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>-0.12752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.67066</td>
<td>90% [1,-1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excited State 2: Singlet-A 31.23058 1000/cm f=0.0000

<table>
<thead>
<tr>
<th>MO</th>
<th>52</th>
<th>54</th>
<th>55</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>0.68744</td>
<td>95% [2,-1]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excited State 3: Singlet-A 33.96561 1000/cm f=0.0000

<table>
<thead>
<tr>
<th>MO</th>
<th>52</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>0.12585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>0.56321</td>
<td>63% [1,-3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0.39275</td>
<td>31% [1,-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excited State 4: Singlet-B 38.05241 1000/cm f=0.0002

<table>
<thead>
<tr>
<th>MO</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>-0.10478</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>-0.13736</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>0.45698</td>
<td>42% [3,-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.50157</td>
<td>50% [1,-4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excited State 5: Singlet-A 38.05322 1000/cm f=0.0000

<table>
<thead>
<tr>
<th>MO</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>0.13534</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.45488</td>
<td>41% [4,-1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>-0.13767</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>0.28150</td>
<td>16% [1,-3]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>-0.41759</td>
<td>35% [1,-5]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Excited State 6: Singlet-A 40.0696 1000/cm f=0.0002
Excited State	Singlet-A	42.84576 1000/cm	f=0.0000
49 -> 54	0.41878	35%	[5,-1]
53 -> 55	0.56429	64%	[1,-2]

Excited State	Singlet-B	42.9111 1000/cm	f=0.1216
51 -> 54	0.50678	51%	[3,-1]
53 -> 57	-0.47632	45%	[1,-4]

Excited State	Singlet-A	43.63377 1000/cm	f=0.0084
47 -> 54	0.15010		
52 -> 55	0.68451	94%	[2,-2]

Excited State	Singlet-B	45.36786 1000/cm	f=0.0044
53 -> 59	0.67522	91%	[1,-6]
53 -> 61	0.17195		

Excited State	Singlet-B	45.78969 1000/cm	f=1.2769
48 -> 58	0.58944	69%	[2,-5]
53 -> 54	0.19757		

Excited State	Singlet-B	46.80917 1000/cm	f=0.0109
52 -> 56	-0.37409	28%	[2,-3]
52 -> 58	0.58944	69%	[2,-5]

Excited State	Singlet-A	46.84062 1000/cm	f=0.0017
49 -> 56	-0.20757		
49 -> 58	0.36530	27%	[5,-5]

Excited State	Singlet-B	48.12224 1000/cm	f=0.0001
53 -> 59	-0.17039		
53 -> 61	0.66355	88%	[1,-8]

Excited State	Singlet-A	50.10636 1000/cm	f=0.0000
48 -> 58	-0.10265		
49 -> 57	-0.41664	35%	[5,-4]
50 -> 54	0.15741		
51 -> 55	0.50830	52%	[3,-2]

Excited State	Singlet-B	50.11766 1000/cm	f=0.0012
48 -> 57	0.13313		
49 -> 56	-0.20757		
49 -> 58	0.36530	27%	[5,-5]
50 -> 55	0.50617	51%	[4,-2]
51 -> 54	0.15615		
53 -> 57	0.12260		
Excited State 20: Singlet-B 50.5169 1000/cm f=0.0957
48 -> 54 0.28886 17% [6,-1]
50 -> 56 0.52208 55% [4,-3]
50 -> 58 0.25918 13% [4,-5]
52 -> 58 0.10326
53 -> 65 -0.20297

Excited State 21: Singlet-A 50.58626 1000/cm f=0.0000
51 -> 56 0.57677 67% [3,-3]
51 -> 58 0.40549 33% [3,-5]

Excited State 22: Singlet-A 50.59513 1000/cm f=0.0000
53 -> 62 0.69022 95% [1,-9]
53 -> 66 0.11633

Excited State 23: Singlet-B 50.70079 1000/cm f=0.0679
48 -> 54 0.42476 36% [6,-1]
50 -> 56 -0.29224 17% [4,-3]
50 -> 58 -0.27016 15% [4,-5]
52 -> 56 0.10240
53 -> 65 -0.34333 24% [1,-12]

Excited State 24: Singlet-B 51.73721 1000/cm f=0.3813
49 -> 55 0.48072 46% [5,-2]
50 -> 56 0.13426
50 -> 58 -0.32569 21% [4,-5]
51 -> 57 0.34413 24% [3,-4]

Excited State 25: Singlet-B 51.78077 1000/cm f=0.0000
53 -> 63 0.69384 96% [1,-10]

Excited State 26: Singlet-A 52.42198 1000/cm f=0.0000
52 -> 59 0.62752 79% [2,-6]
52 -> 61 0.28941 17% [2,-8]

Excited State 27: Singlet-B 52.5357 1000/cm f=0.0002
44 -> 54 0.10255
47 -> 54 0.66840 89% [7,-1]
52 -> 55 -0.15318

Excited State 28: Singlet-A 53.40356 1000/cm f=0.0048
49 -> 61 0.11752
53 -> 64 0.68198 93% [1,-11]
53 -> 71 -0.10008

Excited State 29: Singlet-B 53.96492 1000/cm f=1.2644
49 -> 55 0.43602 38% [5,-2]
50 -> 56 -0.12630
50 -> 58 0.21383
51 -> 57 -0.24141 12% [3,-4]
52 -> 56 -0.12188
53 -> 65 -0.37762 29% [1,-12]
53 -> 68 0.10506

Excited State 30: Singlet-A 54.26254 1000/cm f=0.0143
46 -> 54 -0.24596 12% [8,-1]
47 -> 56 0.10336
48 -> 55 -0.15805
49 -> 54 0.10885
50 -> 57 0.39832 32% [4,-4]
51 -> 56 0.26104 14% [3,-3]
51 -> 58 -0.36750 27% [3,-5]

Excited State 31: Singlet-B 54.60532 1000/cm f=0.0001
Excited State 32: Singlet-A 54.60694 1000/cm f=0.0000

Excited State 33: Singlet-B 54.92311 1000/cm f=0.0265

Excited State 34: Singlet-A 55.02553 1000/cm f=0.0000

Excited State 35: Singlet-B 55.14894 1000/cm f=0.0997

Excited State 36: Singlet-A 55.40623 1000/cm f=0.0000

Excited State 37: Singlet-A 55.56028 1000/cm f=0.0000

Excited State 38: Singlet-B 55.61271 1000/cm f=0.3008

Excited State 39: Singlet-B 55.89581 1000/cm f=0.0005

Excited State 40: Singlet-B 56.3757 1000/cm f=0.0276

Normal termination of Gaussian 03 at Mon Apr 11 21:24:50 2011.
GAUSSIAN03 reference:

Gaussian 03, Revision B.04,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Izengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,