Supporting Information for

Fe$_3$O$_4$ nanoparticles integrated graphene sheets for high-performance half and full lithium-ion cells

Liwen Ji†, Zhongkui Tan†, Tevye R. Kuykendall†, Shaul Aloni†, Shidi Xun‡, Eric Lin†, Vincent Battaglia‡, and Yuegang Zhang†*

†The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 and ‡Advanced Energy Technology Department, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

* Address correspondence to yzhang5@lbl.gov.
Figure S1. Thermogravimetric result of RGO-Fe$_3$O$_4$ nanocomposite oxidation in air environment with a heating rate of 10 °C/min.
Figure S2. Raman spectroscopy of the as-prepared RGO-Fe₃O₄ nanocomposites.
Figure S3. TEM images of the as-synthesized RGO-Fe₃O₄ nanocomposites.
Figure S4. SEM (a,b), and TEM images (c,d) of pure Fe$_3$O$_4$ nanoparticles.
Figure S5. Galvanostatic charge/discharge profiles of pure Fe$_3$O$_4$ nanoparticles at different cycling rate of (a) 0.2C, (b) 0.5C, (c) 1C, with a cutoff voltage window of 2.8 V to 0.002 V.