Supporting Information for

Reduced Graphene Oxide as Capturer of Dyes and Electrons during Photocatalysis: Surface Wrapping and Capture Promoted Efficiency

Jinghai Liu1,2,3, Zhichao Wang1,2, Liwei Liu1 and Wei Chen*1

1i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, P. R. China, 2Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, P. R. China, and 3Institute of Chemistry, Chinese Academy of Sciences, No.21st North Street Zhongguancun, Beijing 100190, P. R. China.

*Corresponding author: Wei Chen, E-mail: wchen2006@sinano.ac.cn and Fax: (+86)-512-62603079
Figure S1. XRD pattern of graphene-w-TiO$_2$ and anatase TiO$_2$ control. Here, graphene-w-TiO2 was referred as to graphene-w-TiO$_2$ (A) at the bottom.

Figure S2. Raman spectra of graphene-w-TiO$_2$ and Anatase TiO$_2$ control. Exciting source: 635 nm laser.
Figure S3. FTIR spectra of the Graphene-w-TiO$_2$ and Graphene oxide-TiO$_2$ (measured as KBr pellets).

Figure S4. AFM image of graphene oxide, at the bottom is the typical height profile of exfoliated graphene oxide.
Figure S5. The adsorption-desorption isotherm of physical mixing of graphene and TiO$_2$ (a) and TiO$_2$ (b). MB: 10 mg/L, 50 mL. Photocatalyst: 10 mg.

Figure S6. The change in optical absorption of MB solution: (a) the adsorption in the dark. (b) The photocatalytic degradation process.