Supplementary Information for "A hybrid all-atom/coarse grain model for multiscale simulations of DNA"

Matías Rodrigo Machado,^a Pablo Daniel Dans^a and Sergio Pantano^{a*} ^a Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, Uruguay, Fax: +598-2522 4185, Tel: +598-2522 0910, E-mail: spantano@pasteur.edu.uy

Helical parameters for systems S_{AA2} and S_{H2}

Structural parameters at the AA region of S_{H2} (base pairs G_8 to C_{13}) show a good match against those of S_{AA2} , in close analogy with the results found for S_{H1} and S_{AA1} (Figure S1). Notably, the sequence specific behavior in Twist, Roll or Shift is well reproduced in the atomistic region of S_{H2} . There are differences in both S_{H2} and S_{AA2} respect to experimental values for Twist and Slide. Such departures are always related to pyrimidine-purine steps (TG, CA), which show a higher dispersion in the experimental data set².

References

- S. Arnott, P. J. Campbell-Smith and R. Chandrasekaran, in Handbook of biochemistry and molecular biology, ed. Nucleic Acids, CRC Press, Cleveland, 3rd edn., 1976, vol. II, pp. 411-422.
- A. Pérez, F. Lankas, F. J. Luque and M. Orozco, *Nucleic Acids Res.*, 2008, **36**, 2379-2394.

Figure S1. Comparison of DNA helical parameters for systems S_{AA2} and S_{H2} . A) Rise, B) Twist, C) Roll, D) Slide, E) Shift and F) Stretch. The vertical dashed lines indicate the AA/CG frontiers in S_{H2} . The canonical values for A and B DNA forms according to Arnott et al.¹ are indicated with dashed and continuous red lines, respectively. Filled and open circles represent data for systems S_{H2} and S_{AA2} , respectively. Squares correspond to averaged experimental data taken form reference 2. Standard deviations are reported as error bars.