Oxidation mechanism of diethyl ether:
a complex process for a simple molecule

Stefania Di Tommaso, Patricia Rotureau, Orlando Crescenzi, Carlo Adamo

Contents
1) Comments on the initiation step
2) Figure S1
3) Figure S2
4) Figure S3
5) Figure S4
6) Figure S5
7) Figure S6
8) Figure S7
S1. Comments on the initiation step

Different mechanisms have been proposed in literature for the autoxidation process of DEE. In particular the initiation step has been the object of a lot of experimental and theoretical studies. Clover\(^1\), for instance, in his experimental work, has assumed that the initiator of the process is the molecular oxygen which gets into a C-H bond of one methylene group to produce the CH\(_3\)CH\(_2\)OCH(OOH)CH\(_3\) hydroperoxide \((\text{a})\).

\[
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \text{O}_2 \rightarrow \text{CH}_3\text{CH}(\text{OOH})\text{OCH}_2\text{CH}_3 \quad (\text{a})
\]

In the same years, Wieland and Wingler\(^2\) have postulated that the DEE autoxidation process begins with dehydration \((\text{b})\) of the ether to vinyl ethers with formation of hydrogen peroxide. Some others studies in literature have also proposed that, in a different way, the molecular oxygen is the initiator of the process\(^3\),\(^4\) \((\text{c})\). It has also been suggested that O\(_2\) abstracts an hydrogen atom from a methylene group of solvent to produce the radicals CH\(_3\)\(_2\)OCHCH\(_3\) and \(\cdot\text{HO}_2\). Lemay\(^3\) in particular has suggested that the radical \(\cdot\text{HO}_2\) can also act as initiator \((\text{d})\). More recently, as already done in numerous experimental works concerning the kinetics of ethers decomposition in atmosphere\(^5\),\(^6\), Galano and co.\(^7\) have investigated, at DFT theoretical level, the initiation of the decomposition process of a series of aliphatic ethers. They have proposed like Andersen\(^8\) for dimethyl ether, that the initiator of the atmospheric ethers autoxidation process is the hydroxyl radical \((\text{e})\).

\[
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \text{O}_2 \rightarrow \text{CH}_3\text{CH}_2\text{OCH} = \text{CH}_2 + \text{H}_2\text{O}_2 \quad (\text{b})
\]

\[
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \text{O}_2 \rightarrow \text{CH}_3\text{CH}_2\text{OCHCH}_3 + \cdot\text{HO}_2 \quad (\text{c})
\]

\[
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \cdot\text{HO}_2 \rightarrow \text{CH}_3\text{CH}_2\text{OCHCH}_3 + \text{H}_2\text{O}_2 \quad (\text{d})
\]

\[
\text{CH}_3\text{CH}_2\text{OCH}_2\text{CH}_3 + \cdot\text{OH} \rightarrow \text{CH}_3\cdot\text{CHOCH}_2\text{CH}_3 + \text{H}_2\text{O} \quad (\text{e})
\]

DFT calculations on the four reactions \((\text{b-e})\) described above, have given the results depicted in figure S3. It seems evident that OH radical is the most efficient among the initiators of the chain process explored \((\text{e})\) reaction is exothermic and barrier less). The three other reactions are in fact all endothermic (from 4.5 kcal/mol \((\text{b})\) to 43.0 kcal/mol \((\text{c})\)) or present prohibitive activation energies (48.5 kcal/mol for reaction \(\text{c}\) and 43.6 kcal/mol for reaction \(\text{b}\)) or both.
References

Figure S1. Comparison between gas phase and solvent energetic profiles for the first step of one of the dimerization pathways. For each stationary point is noted the calculated \(\Delta \Delta E = \Delta E_{\text{gas phase}} - \Delta E_{\text{solvent}} \).
Figure S2. Sketch of oxidation mechanism concerning DEE radical at terminal carbon (path b) with energies (ΔH in kcal/mol) relative to the initiation step.
Figure S3. Comparison between the different initiation reactions (see paragraph S1 for labelling).
Figure S4. View of optimized structures of the most important minima involved in autoxidation of DEE.
Figure S5. View of optimized structures of the most important transition states involved in autoxidation of DEE: path a.

Transition states involved in 2a decomposition

Transition states involved in 2a decomposition.

TSdec

O-C1=1.269 Å
O-C2=1.934 Å
C3-C2-O-C1=179.03°

POO dec

C-O1=1.795 Å
O1-O2=1.503 Å
O2-H=1.283 Å
C-H=1.331 Å
C-O1-O2-H=2.30°

TSdec

C1-O1=1.436 Å
O1-O2=1.416 Å
O2-H=1.208 Å
C3-H=1.349 Å
C1-O1-O2-H=103.10°

TS dec

C1-O1=1.235 Å
C1-C2=2.241 Å
O-C1-O2=104.05°

Transition states involved in 3a dimerization reactions

Transition states involved in 3a dimerization reactions.

TS1a

O1-O2=1.714 Å
O1-O4=2.008 Å
O2-H=1.670 Å
C-H=1.171 Å
O1-O2-O4=96.94°
O2-O3-O4=7.70°

TS3a

O1-O2=1.388 Å
O2-O3=1.593 Å
O3-O4=1.654 Å
O1-O2-O3-O4=3.08°
Transition states and minima involved in 3a isomerization

TS2\(a\)

\[
\begin{align*}
O1-O2 &= 2.029\text{ Å} \\
O2-H &= 1.008\text{ Å} \\
O1-H &= 1.608\text{ Å} \\
\end{align*}
\]

\(E_a = 17.2\text{ kcal/mol}\)

TS5\(a\)

\[
\begin{align*}
O1-O2 &= 1.424\text{ Å} \\
O2-H &= 1.188\text{ Å} \\
C2-H &= 1.392\text{ Å} \\
C1-O1-O2-H &= 31.47° \\
E_a &= 36.1\text{ kcal/mol} \\
\end{align*}
\]

TS6\(a\)

\[
\begin{align*}
C1-H &= 1.345\text{ Å} \\
O4-H &= 1.212\text{ Å} \\
O1-C1-C2-O3 &= -62.50° \\
C2-O3-O4-H &= 60.13° \\
\end{align*}
\]

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics

This journal is © The Owner Societies 2011
Transition states and minima involved in 11a decomposition reactions

TS9a
O1-O2=1.440 Å
O2-H=1.064 Å
O-H=1.457 Å
O-C1-O1-O2=-48.79°

TS10a
O1-O2=1.623 Å
C1-O= 2.128 Å
O-H= 1.457 Å
O3-H= 1.256 Å
C1-H= 1.342 Å
O1-C1-H-O3=-105.47°

TS11a
O1-O2=1.951 Å
C1-H= 1.227 Å
O2-H= 1.551 Å
O1-C1-H-O2=-6.50°

TS13a
O1-O2=1.930 Å
C1-O1= 1.324 Å
C1-O2= 2.144 Å
O-H= 1.457 Å
C1-H-O= 57.35°
O1-C1-O-C2= 153.07°

TS14a
O1-O2=1.445 Å
C1-H= 1.452 Å
C3-H2= 1.147 Å
H1-H2= 0.951 Å
O-C2= 2.325 Å
C1-H1-H2-C3= 15.93°
Transition states and minima involved in aOOH decomposition reactions

TSaOHH
\begin{align*}
C1-O1 & = 1.457\text{Å} \\
O1-O2 & = 1.414\text{Å} \\
O2-H & = 1.206\text{Å} \\
C2-H & = 1.351\text{Å} \\
C1-O1-O2-H & = -102.34^\circ \\
O1-O2-H-C2 & = -136.54^\circ
\end{align*}

TSbOHH
\begin{align*}
C1-O1 & = 1.301\text{Å} \\
O1-O2 & = 1.975\text{Å} \\
O2-H & = 1.638\text{Å} \\
C-H & = 1.195\text{Å} \\
C-O1-O2-H & = 8.83^\circ
\end{align*}

TScOHH
\begin{align*}
C1-O1 & = 1.330\text{Å} \\
O1-O2 & = 2.023\text{Å} \\
O2-H & = 1.317\text{Å} \\
C2-H & = 1.315\text{Å} \\
C1-O1-O2-H & = -26.71^\circ
\end{align*}

TSdOHH
\begin{align*}
C1-O1 & = 1.325\text{Å} \\
O1-O2 & = 2.086\text{Å} \\
O2-H & = 1.455\text{Å} \\
C1-O1-O2-H & = -51.69^\circ
\end{align*}

TSeOHH
\begin{align*}
C1-O1 & = 1.361\text{Å} \\
C-O2 & = 1.318\text{Å} \\
O2-O3 & = 1.903\text{Å} \\
C-O3 & = 1.918\text{Å} \\
C1-O1-O2-O3 & = 178.22^\circ
\end{align*}
Figure S6. Relative enthalpies of 3b dimerization reactions I (purple) and II (orange).
Figure S7. View of optimized structures of the most important transition states involved in autoxidation of DEE: path b.

Transition states involved in 3b dimerizations

![Transition states involved in 3b dimerizations](image)

Transition states and minima involved in 3b isomerization

![Transition states and minima involved in 3b isomerization](image)
Transition state involved in bOOH production

Transition state involved in bOOH production

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011