ELECTRONIC SUPPLEMENTARY INFORMATION

Effective Control of Gas Hydrate Dissociation above the Melting Point of Ice

Masato Kida,*a Yusuke Jin,a Hideo Narita,b and Jiro Nagao*a

*a Production Technology Team, Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohiraku, Sapporo, Hokkaido 062-8517, Japan. Fax: +81-11-857-8985; Tel: +81-11-857-8948; E-mail: jiro.nagao@aist.go.jp, m.kida@aist.go.jp

b Methane Hydrate Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohiraku, Sapporo, Hokkaido 062-8517, Japan. E-mail: h.narita@aist.go.jp

10

Additional data

The change in P/P_f of pure THFh (0.20 g) with grain sizes of 1–2 mm under methane atmosphere was measured with the same protocol as MH and MH-THFh. As shown in Fig. S1, P/P_f remained constant at 1.0 during the temperature ramping, suggesting that effect of methane trapping into THFh cavities from the vapor phase on the ratio of P/P_f during the temperature ramping tests in the present study is negligible.

![Graph showing the change in ratio of corrected pressure (P/P_f) of pure THFh under methane atmosphere during temperature ramping. Solid vertical line indicates the melting point of ice. Dashed vertical line indicates the THF hydrate dissociation temperature in the literature.](image-url)

Fig. S1 Change in the ratio of the corrected pressure (P/P_f) of pure THFh under methane atmosphere during temperature ramping. Solid vertical line indicates the melting point of ice. Dashed vertical line indicates the THF hydrate dissociation temperature in the literature.