Developing a computational model that accurately reproduces the structural features of a dinucleoside monophosphate unit within B-DNA

Cassandra D. M. Churchill and Stacey D. Wetmore*

Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4

Electronic Supplementary Information (ESI)

Table of Contents

Optimized structures for modified sequences

- Figure ESI–1 to ESI–3: 5′–GU–3′ ESI–2 to ESI–4
- Figure ESI–4 to ESI–6: 5′–GBrU–3′ ESI–5 to ESI–7

Backbone torsion angles for all computational model, method and sequence combinations

- Table ESI–1: 5′–GT–3’ ESI–8
- Table ESI–2: 5′–GU–3’ ESI–9
- Table ESI–3: 5′–GBrU–3’ ESI–10

Basis Set Effects

- Table ESI–4: 6-31G(d,p) vs. 6-31+G(d,p) with an anionic phosphate ESI–11

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2011
Figure ESI–1: B3LYP structures of the 5′–GU–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Figure ESI–2: MPWB1K structures of the 5′–GU–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Figure ESI–3: M06-2X structures of the 5′–GU–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Figure ESI–4: B3LYP structures of the 5′–G³U–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Figure ESI–5: MPWB1K structures of the 5′–G³⁻U–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Figure ESI–6: M06-2X structures of the 5′–G–3′ dinucleoside monophosphate sequence optimized in the gas phase (a–c) and water (d–f) using the anionic (a,d), neutral (b,e) and counterion (c,f) phosphate models.
Table ESI–1: Backbone torsion angles (°) and pseudorotation phase angles (P, ’) of the 5‘–GT–3’ sequence calculated in the gas-phase and water, as well as the average value (Exp.) and standard deviation (SD) obtained from experiment.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp.</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ5’</td>
<td>B3LYP</td>
<td>MPWB1K</td>
<td>M06-2X</td>
<td>B3LYP</td>
<td>MPWB1K</td>
</tr>
<tr>
<td></td>
<td>232.0</td>
<td>201.3</td>
<td>210.3</td>
<td>195.3</td>
<td>237.9</td>
</tr>
<tr>
<td>δ5’</td>
<td>145.4</td>
<td>147.5</td>
<td>148.1</td>
<td>143.4</td>
<td>147.0</td>
</tr>
<tr>
<td>ε</td>
<td>201.8</td>
<td>167.5</td>
<td>161.9</td>
<td>193.7</td>
<td>197.6</td>
</tr>
<tr>
<td>ζ</td>
<td>277.6</td>
<td>278.3</td>
<td>279.0</td>
<td>261.7</td>
<td>173.9</td>
</tr>
<tr>
<td>α</td>
<td>261.0</td>
<td>268.6</td>
<td>271.3</td>
<td>314.8</td>
<td>23.2</td>
</tr>
<tr>
<td>β</td>
<td>260.0</td>
<td>247.5</td>
<td>250.5</td>
<td>185.8</td>
<td>84.5</td>
</tr>
<tr>
<td>γ</td>
<td>64.6</td>
<td>59.8</td>
<td>56.1</td>
<td>55.3</td>
<td>51.3</td>
</tr>
<tr>
<td>χ3’</td>
<td>251.3</td>
<td>273.7</td>
<td>277.9</td>
<td>262.4</td>
<td>250.6</td>
</tr>
<tr>
<td>δ3’</td>
<td>145.4</td>
<td>153.7</td>
<td>155.4</td>
<td>148.3</td>
<td>126.8</td>
</tr>
<tr>
<td>P5’</td>
<td>172.2</td>
<td>164.8</td>
<td>165.7</td>
<td>160.8</td>
<td>173.5</td>
</tr>
<tr>
<td>P3’</td>
<td>171.1</td>
<td>189.5</td>
<td>199.5</td>
<td>171.9</td>
<td>127.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp.</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ5’</td>
<td>B3LYP</td>
<td>MPWB1K</td>
<td>M06-2X</td>
<td>B3LYP</td>
<td>MPWB1K</td>
</tr>
<tr>
<td></td>
<td>237.3</td>
<td>210.4</td>
<td>227.2</td>
<td>238.1</td>
<td>241.2</td>
</tr>
<tr>
<td>δ5’</td>
<td>147.0</td>
<td>150.1</td>
<td>149.8</td>
<td>146.2</td>
<td>147.2</td>
</tr>
<tr>
<td>ε</td>
<td>203.3</td>
<td>162.8</td>
<td>158.0</td>
<td>220.7</td>
<td>187.1</td>
</tr>
<tr>
<td>ζ</td>
<td>279.5</td>
<td>277.0</td>
<td>276.8</td>
<td>264.4</td>
<td>218.0</td>
</tr>
<tr>
<td>α</td>
<td>284.3</td>
<td>271.5</td>
<td>274.6</td>
<td>315.5</td>
<td>323.8</td>
</tr>
<tr>
<td>β</td>
<td>242.3</td>
<td>244.3</td>
<td>240.7</td>
<td>157.0</td>
<td>150.3</td>
</tr>
<tr>
<td>γ</td>
<td>59.8</td>
<td>60.5</td>
<td>48.0</td>
<td>58.2</td>
<td>60.3</td>
</tr>
<tr>
<td>χ3’</td>
<td>242.6</td>
<td>273.0</td>
<td>265.0</td>
<td>246.8</td>
<td>249.0</td>
</tr>
<tr>
<td>δ3’</td>
<td>146.8</td>
<td>155.1</td>
<td>154.0</td>
<td>143.7</td>
<td>147.0</td>
</tr>
<tr>
<td>P5’</td>
<td>177.8</td>
<td>170.1</td>
<td>170.5</td>
<td>177.6</td>
<td>176.8</td>
</tr>
<tr>
<td>P3’</td>
<td>170.1</td>
<td>184.1</td>
<td>178.7</td>
<td>159.1</td>
<td>158.3</td>
</tr>
</tbody>
</table>

See Figure 2 for definitions of backbone torsion angles. See Ref. 113. See Ref. 72. Due to SCF convergence issues, structures were obtained using M06-2X-optimized structures as input rather than the standard HyperChem-generated structures.
Table ESI–2: Backbone torsion angles (') and pseudorotation phase angles (P, ’) of the 5′–GU–3′ sequence calculated in the gas-phase and water, as well as the average value (Exp.) and standard deviation (SD) obtained from experiment.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B3LYP</td>
<td>MPW1K</td>
<td>B3LYP</td>
<td>MPW1K</td>
</tr>
<tr>
<td>6</td>
<td>232.2</td>
<td>209.1</td>
<td>217.3</td>
<td>241.6</td>
</tr>
<tr>
<td>6′</td>
<td>146.0</td>
<td>149.6</td>
<td>147.7</td>
<td>147.4</td>
</tr>
<tr>
<td>ε</td>
<td>206.9</td>
<td>165.8</td>
<td>157.2</td>
<td>195.3</td>
</tr>
<tr>
<td>ζ</td>
<td>281.0</td>
<td>274.7</td>
<td>273.8</td>
<td>181.6</td>
</tr>
<tr>
<td>α</td>
<td>250.1</td>
<td>264.8</td>
<td>265.9</td>
<td>27.4</td>
</tr>
<tr>
<td>β</td>
<td>264.2</td>
<td>254.3</td>
<td>252.4</td>
<td>88.1</td>
</tr>
<tr>
<td>γ</td>
<td>64.2</td>
<td>54.2</td>
<td>53.7</td>
<td>51.2</td>
</tr>
<tr>
<td>δ3′</td>
<td>252.4</td>
<td>232.6</td>
<td>274.4</td>
<td>246.5</td>
</tr>
<tr>
<td>δ3</td>
<td>146.6</td>
<td>151.8</td>
<td>155.7</td>
<td>119.2</td>
</tr>
<tr>
<td>P5′</td>
<td>172.7</td>
<td>164.5</td>
<td>164.4</td>
<td>180.2</td>
</tr>
<tr>
<td>P3′</td>
<td>170.8</td>
<td>170.3</td>
<td>196.6</td>
<td>121.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp. SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B3LYP</td>
<td>MPW1K</td>
<td>B3LYP</td>
<td>MPW1K</td>
</tr>
<tr>
<td>6</td>
<td>239.6</td>
<td>216.3</td>
<td>226.7</td>
<td>237.8</td>
</tr>
<tr>
<td>6′</td>
<td>147.7</td>
<td>150.8</td>
<td>149.9</td>
<td>212.8</td>
</tr>
<tr>
<td>ε</td>
<td>206.8</td>
<td>161.3</td>
<td>154.8</td>
<td>219.2</td>
</tr>
<tr>
<td>ζ</td>
<td>284.0</td>
<td>277.2</td>
<td>277.6</td>
<td>263.3</td>
</tr>
<tr>
<td>α</td>
<td>276.9</td>
<td>269.0</td>
<td>267.1</td>
<td>315.0</td>
</tr>
<tr>
<td>β</td>
<td>243.4</td>
<td>245.6</td>
<td>246.5</td>
<td>162.1</td>
</tr>
<tr>
<td>γ</td>
<td>55.2</td>
<td>57.7</td>
<td>52.8</td>
<td>58.0</td>
</tr>
<tr>
<td>δ3′</td>
<td>234.9</td>
<td>273.7</td>
<td>274.2</td>
<td>243.2</td>
</tr>
<tr>
<td>δ3</td>
<td>148.3</td>
<td>155.4</td>
<td>155.8</td>
<td>144.3</td>
</tr>
<tr>
<td>P5′</td>
<td>187.8</td>
<td>171.9</td>
<td>171.7</td>
<td>178.0</td>
</tr>
<tr>
<td>P3′</td>
<td>170.2</td>
<td>187.9</td>
<td>189.2</td>
<td>160.0</td>
</tr>
</tbody>
</table>

See Figure 2 for definitions of backbone torsion angles. See Ref. 113. See Ref. 72. Due to SCF convergence issues, structures were obtained using M06-2X-optimized structures as input rather than the standard HyperChem-generated structures.

Due to SCF convergence issues, sequence calculated in the gas-phase, structures were obtained using M06-2X-optimized structures as input rather than the standard HyperChem-generated structures.
Table ESI–3: Backbone torsion angles (°) and pseudorotation phase angles (P, °) of the 5'–GBrU–3' sequence calculated in the gas-phase and water, as well as the average value (Exp.) and standard deviation (SD) obtained from experiment.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp. (^b)</th>
<th>SD (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^5)</td>
<td>B3LYP 230.5</td>
<td>B3LYP 196.8</td>
<td>B3LYP 206.8</td>
<td>258</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>MPWB1K 212.1</td>
<td>MPWB1K 233.6</td>
<td>MPWB1K 229.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M06-2X 210.7</td>
<td>M06-2X 231.2</td>
<td>M06-2X 228.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^5)</td>
<td>144.5 150.7</td>
<td>144.2 149.2</td>
<td>145.3 146.4</td>
<td>128</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>150.6 150.6</td>
<td>149.6 147.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>278.0 165.8</td>
<td>195.1 160.8</td>
<td>179.8 160.3</td>
<td>184</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>162.4 158.2</td>
<td>154.3 154.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\zeta)</td>
<td>286.7 275.7</td>
<td>265.0 266.1</td>
<td>276.9 273.1</td>
<td>265</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>278.0 269.2</td>
<td>278.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>251.1 268.9</td>
<td>308.6 293.8</td>
<td>293.4 283.7</td>
<td>298</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>267.0</td>
<td>292.2</td>
<td>280.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>260.9 253.4</td>
<td>188.1 221.2</td>
<td>230.1 230.6</td>
<td>176</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>256.7 226.5</td>
<td>239.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>57.6 52.4</td>
<td>52.1 45.3</td>
<td>51.8 47.1</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>52.1</td>
<td>44.4</td>
<td>47.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^3)</td>
<td>238.8 233.0</td>
<td>261.3 256.5</td>
<td>238.6 257.7</td>
<td>241</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>240.6</td>
<td>258.6</td>
<td>260.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^3)</td>
<td>148.5 152.5</td>
<td>148.3 150.6</td>
<td>147.1 151.1</td>
<td>128</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>154.7</td>
<td>151.7</td>
<td>153.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P^5)</td>
<td>169.5 166.6</td>
<td>162.3 167.4</td>
<td>160.9 162.9</td>
<td>144–190(^c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>167.8</td>
<td>168.4</td>
<td>165.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P^3)</td>
<td>177.3 170.3</td>
<td>172.7 168.3</td>
<td>172.2 171.9</td>
<td>144–190(^c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>173.9</td>
<td>171.7</td>
<td>175.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>Anionic</th>
<th>Neutral</th>
<th>Counterion</th>
<th>Exp. (^b)</th>
<th>SD (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^5)</td>
<td>B3LYP 238.0</td>
<td>B3LYP 237.5</td>
<td>B3LYP 237.5</td>
<td>258</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>MPWB1K 202.1</td>
<td>MPWB1K 236.7</td>
<td>MPWB1K 229.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M06-2X 227.3</td>
<td>M06-2X 232.9</td>
<td>M06-2X 227.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^5)</td>
<td>145.6 151.7</td>
<td>147.0 146.1</td>
<td>149.0 149.5</td>
<td>128</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>150.2</td>
<td>151.8</td>
<td>150.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon)</td>
<td>219.0 166.2</td>
<td>276.1 215.3</td>
<td>275.6 162.5</td>
<td>265</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>202.8</td>
<td>161.1</td>
<td>157.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\zeta)</td>
<td>298.4 279.6</td>
<td>270.8 273.0</td>
<td>286.8 271.8</td>
<td>265</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>276.6</td>
<td>265.7</td>
<td>276.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>253.4 268.6</td>
<td>301.6 304.5</td>
<td>277.6 280.4</td>
<td>298</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>276.4</td>
<td>295.1</td>
<td>277.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>249.5 245.4</td>
<td>192.5 176.2</td>
<td>222.2 227.3</td>
<td>176</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>242.3</td>
<td>217.4</td>
<td>238.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>58.0 60.2</td>
<td>50.7 55.7</td>
<td>53.1 50.2</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>47.2</td>
<td>47.3</td>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\chi^3)</td>
<td>238.7 272.7</td>
<td>225.6 237.1</td>
<td>231.9 252.4</td>
<td>241</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>260.3</td>
<td>253.1</td>
<td>258.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta^3)</td>
<td>149.5 154.9</td>
<td>146.9 147.7</td>
<td>148.3 149.9</td>
<td>128</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>153.8</td>
<td>150.4</td>
<td>152.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P^5)</td>
<td>176.6 172.2</td>
<td>176.0 170.9</td>
<td>178.5 170.0</td>
<td>144–190(^c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>170.4</td>
<td>172.2</td>
<td>171.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P^3)</td>
<td>174.4 180.6</td>
<td>167.3 157.8</td>
<td>173.0 166.2</td>
<td>144–190(^c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>176.7</td>
<td>167.0</td>
<td>173.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) See Figure 2 for definitions of backbone torsion angles. \(^b\) See Ref. 113. \(^c\) See Ref. 72. \(^d\) Due to SCF convergence issues, structures were obtained using M06-2X-optimized structures as input rather than the standard HyperChem-generated structures.
Table ESI–4: Comparison of the 6-31G(d,p) and 6-31+G(d,p) backbone torsion angles (°), pseudorotation phase angles (P, °) and the angle between nucleobase planes (φ, °) for the 5′–GT–3′ sequence calculated in the gas-phase and water with M06-2X for the anionic and counterion phosphate models, as well as the average value (Exp.) and standard deviation (SD) obtained from experiment.

<table>
<thead>
<tr>
<th></th>
<th>Anionic 6-31+G(d,p)</th>
<th>Anionic 6-31G(d,p)</th>
<th>Counterion 6-31+G(d,p)</th>
<th>Counterion 6-31G(d,p)</th>
<th>Exp. (^b)</th>
<th>SD (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^5′</td>
<td>201.7</td>
<td>233.9</td>
<td>210.7</td>
<td>227.3</td>
<td>238.3</td>
<td>260.5</td>
</tr>
<tr>
<td>δ^5′</td>
<td>146.1</td>
<td>149.5</td>
<td>150.6</td>
<td>150.2</td>
<td>146.7</td>
<td>147.5</td>
</tr>
<tr>
<td>ε</td>
<td>167.2</td>
<td>162.6</td>
<td>162.4</td>
<td>202.8</td>
<td>154.4</td>
<td>160.3</td>
</tr>
<tr>
<td>ζ</td>
<td>279.4</td>
<td>272.6</td>
<td>278.0</td>
<td>276.6</td>
<td>276.7</td>
<td>268.3</td>
</tr>
<tr>
<td>β</td>
<td>254.4</td>
<td>223.5</td>
<td>256.7</td>
<td>242.3</td>
<td>230.7</td>
<td>188.3</td>
</tr>
<tr>
<td>γ</td>
<td>56.2</td>
<td>49.1</td>
<td>52.1</td>
<td>47.2</td>
<td>46.7</td>
<td>55.8</td>
</tr>
<tr>
<td>χ^3′</td>
<td>279.1</td>
<td>254.3</td>
<td>240.6</td>
<td>260.3</td>
<td>257.9</td>
<td>251.5</td>
</tr>
<tr>
<td>δ^3′</td>
<td>154.2</td>
<td>149.4</td>
<td>154.7</td>
<td>153.8</td>
<td>150.2</td>
<td>146.0</td>
</tr>
<tr>
<td>P^5′</td>
<td>163.1</td>
<td>173.2</td>
<td>167.8</td>
<td>170.4</td>
<td>168.4</td>
<td>189.3</td>
</tr>
<tr>
<td>P^3′</td>
<td>198.5</td>
<td>168.9</td>
<td>173.9</td>
<td>176.7</td>
<td>170.9</td>
<td>160.9</td>
</tr>
<tr>
<td>φ</td>
<td>32.1</td>
<td>6.1</td>
<td>28.8</td>
<td>4.9</td>
<td>11.6</td>
<td>6.8</td>
</tr>
</tbody>
</table>

\(^a\)See Figure 2 for definitions of backbone torsion angles. \(^b\)See Ref. 113. \(^c\)See Ref. 72.