Supporting Information

Ionic Liquids based on diethylmethyl(2-methoxyethyl)ammonium cation and bis(perfluoroalkanesulfonyl)amide anions: influence of anion structure on liquid properties

Yukihiro Yoshida and Gunzi Saito

Research Institute, Meijo University, Shiogamaguchi 1-501 Tempaku-ku, Nagoya 468-8502, Japan

[TMA][[(FSO)₂N]] (TMA-0). IR (KBr) \(\nu_{\text{max}}\): 453w, 571s, 754m, 837m, 949m, 1096m, 1182s, 1222w, 1365m, 1391m, 1491m, 3050w cm\(^{-1}\). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 3.32 (s, 12H) ppm. Anal. Calcd for C\(_4\)H\(_{12}\)F\(_2\)N\(_2\)O\(_4\)S\(_2\): C, 18.89; H, 4.76; N, 11.02%. Found: C, 18.92; H, 4.65; N, 11.13%.

[TMA][[(CF₃SO)₂N]] (TMA-1). IR (KBr) \(\nu_{\text{max}}\): 515m, 571m, 615m, 626w, 742w, 764vw, 793w, 951m, 1039w, 1054s, 1145m, 1191w, 1204s, 1225w, 1332m, 1348s, 1359w, 1422vw, 1492m, 3047w cm\(^{-1}\). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 3.31 (s, 12H) ppm. Anal. Calcd for C\(_6\)H\(_{12}\)F\(_6\)N\(_2\)O\(_4\)S\(_2\): C, 20.34; H, 3.41; N, 7.91%. Found: C, 20.05; H, 3.25; N, 7.95%.

[TMA][[(C\(_2\)F\(_5\)SO)₂N]] (TMA-2). IR (KBr) \(\nu_{\text{max}}\): 522vw, 529m, 537w, 616s, 645w, 657vw, 740w, 757w, 779vw, 953w, 981s, 993vw, 1070w, 1090m, 1131vw, 1152m, 1178s, 1190w, 1212w, 1223w, 1231s, 1335m, 1354s, 1425vw, 1495m, 3044w cm\(^{-1}\). \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 3.31 (s, 12H) ppm. Anal. Calcd for C\(_8\)H\(_{12}\)F\(_{10}\)N\(_2\)O\(_4\)S\(_2\): C, 21.15; H, 2.66; N, 6.17%. Found: C, 20.98; H, 2.57; N, 6.17%.

Table S1. Ionic Conductivity (\(\sigma\) / S cm\(^{-1}\))

<table>
<thead>
<tr>
<th>T / °C</th>
<th>DEME-0</th>
<th>DEME-1</th>
<th>DEME-2</th>
<th>DEME-3</th>
<th>DEME-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>4.87×10(^{-3})</td>
<td>2.72×10(^{-3})</td>
<td>6.20×10(^{-4})</td>
<td>2.15×10(^{-4})</td>
<td>7.61×10(^{-5})</td>
</tr>
<tr>
<td>30</td>
<td>5.64×10(^{-3})</td>
<td>3.30×10(^{-3})</td>
<td>7.89×10(^{-4})</td>
<td>2.85×10(^{-4})</td>
<td>1.02×10(^{-4})</td>
</tr>
<tr>
<td>35</td>
<td>6.52×10(^{-3})</td>
<td>3.93×10(^{-3})</td>
<td>1.01×10(^{-3})</td>
<td>3.71×10(^{-4})</td>
<td>1.35×10(^{-4})</td>
</tr>
<tr>
<td>40</td>
<td>7.41×10(^{-3})</td>
<td>4.60×10(^{-3})</td>
<td>1.25×10(^{-3})</td>
<td>4.77×10(^{-4})</td>
<td>1.76×10(^{-4})</td>
</tr>
<tr>
<td>45</td>
<td>8.39×10(^{-3})</td>
<td>5.32×10(^{-3})</td>
<td>1.53×10(^{-3})</td>
<td>5.97×10(^{-4})</td>
<td>2.24×10(^{-4})</td>
</tr>
<tr>
<td>50</td>
<td>9.43×10(^{-3})</td>
<td>6.06×10(^{-3})</td>
<td>1.84×10(^{-3})</td>
<td>7.38×10(^{-4})</td>
<td>2.82×10(^{-4})</td>
</tr>
<tr>
<td>55</td>
<td>1.05×10(^{-2})</td>
<td>6.88×10(^{-3})</td>
<td>2.16×10(^{-3})</td>
<td>9.04×10(^{-4})</td>
<td>3.50×10(^{-4})</td>
</tr>
<tr>
<td>T / °C</td>
<td>DEME-0</td>
<td>DEME-1</td>
<td>DEME-2</td>
<td>DEME-3</td>
<td>DEME-4</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>20</td>
<td>48.4</td>
<td>82.6</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>39.5</td>
<td>64.0</td>
<td>180</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>32.8</td>
<td>50.5</td>
<td>134</td>
<td>317</td>
<td>519</td>
</tr>
<tr>
<td>35</td>
<td>27.5</td>
<td>40.6</td>
<td>100</td>
<td>229</td>
<td>370</td>
</tr>
<tr>
<td>40</td>
<td>23.3</td>
<td>33.1</td>
<td>78.9</td>
<td>169</td>
<td>274</td>
</tr>
<tr>
<td>45</td>
<td>20.2</td>
<td>27.5</td>
<td>61.8</td>
<td>130</td>
<td>202</td>
</tr>
<tr>
<td>50</td>
<td>17.7</td>
<td>23.2</td>
<td>49.0</td>
<td>98.9</td>
<td>157</td>
</tr>
<tr>
<td>55</td>
<td>15.7</td>
<td>19.7</td>
<td>40.0</td>
<td>78.3</td>
<td>119</td>
</tr>
<tr>
<td>60</td>
<td>14.0</td>
<td>17.0</td>
<td>33.2</td>
<td>61.3</td>
<td>95.0</td>
</tr>
<tr>
<td>65</td>
<td>12.7</td>
<td>14.8</td>
<td>27.7</td>
<td>49.7</td>
<td>76.2</td>
</tr>
<tr>
<td>70</td>
<td>11.3</td>
<td>13.0</td>
<td>23.2</td>
<td>41.0</td>
<td>61.0</td>
</tr>
</tbody>
</table>

Table S2. Viscosity (η / mPa s)

Table S3. Best-Fit Parameters of the Litovitz equation