SUPPLEMENTARY INFORMATION

Fig. S1 Absorption spectra of TC (~4.0×10⁻⁵ M) in aqueous solution at pH 2.3 (A), 5.0 (B), 9.0 (C) and 11 (D) alone and in the presence of increasing amount of Mg(ClO₄)₂ up to 0.374 (A), 1.11 (B), 0.015 (C) and 0.015 (D) M concentrations.
Fig. S2 Quantitative absorption spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Mg$^{2+}$ in aqueous solution at pH 2.3 (A), 5.0 (B), 9.0 (C) and 11 (D).
Fig. S3 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Mg$^{2+}$ in aqueous solution at pH 2.3 (A), 5.0 (B), 9.0 (C) and 11 (D) obtained by Global Analysis of the absorption titrations.
Fig. S4 Fluorescence spectra of TC in aqueous solutions at pH 2.3 (A), 5.0 (B), 9.0 (C) and 11 (D) alone and in the presence of increasing amount of Mg(ClO$_4$)$_2$ up to 0.038 (A), 0.416 (B), 0.015 (C) and 0.015 (D) M concentrations ($\lambda_{\text{exc}}=\lambda_{\text{isosbestic}}$=357 (A), 355 (B), 404 (C) and 398 (D) nm).
Fig. S5 Emission spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Mg$^{2+}$ in aqueous solution at pH 2.3 (A), 5.0 (B), 9.0 (C) and 11 (D).
Fig. S6 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Mg$^{2+}$ in aqueous solution at pH 5.0 (B), 9.0 (C) and 11 (D) obtained by Global Analysis of the fluorescence titrations.
Fig. S7 Absorption spectra of TC (4.0×10^{-5} M) in aqueous solution at pH 2.3 (A) and 5.0 (B) alone and in the presence of increasing amount of CaCl$_2$ up to 0.15 (A) and 0.017 (B) M concentrations.

![Absorption spectra](image)

Fig. S8 Quantitative absorption spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Ca$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B).

![Quantitative absorption spectra](image)

Fig. S9 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Ca$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B) obtained by Global Analysis of the absorption titrations.

![Concentration profiles](image)
Fig. S10 Fluorescence spectra of TC in aqueous solutions at pH 2.3 (A) and 5.0 (B) alone and in the presence of increasing amount of CaCl$_2$ up to 0.037 (A) and 0.017 (B) M concentrations ($\lambda_{\text{exc}}=\lambda_{\text{isosbestic}}=360$ (A) and 370 (B) nm).

Fig. S11 Emission spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Ca$^{2+}$ in aqueous solution at pH 5.0.
Fig. S12 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Ca$^{2+}$ in aqueous solution at pH 5.0 obtained by Global Analysis of the fluorescence titration.

Fig. S13 Absorption spectra of TC (4.0×10$^{-5}$ M) in aqueous solution at pH 2.3 (A) and 5.0 (B) alone and in the presence of increasing amount of CuCl$_2$·H$_2$O up to 0.0042 (A) and 0.00059 (B) M concentrations.
Fig. S14 Quantitative absorption spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Cu$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B).

Fig. S15 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Cu$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B) obtained by Global Analysis of the absorption titrations.
Fig. S16 Fluorescence spectra of TC in aqueous solutions at pH 2.3 (A) and 5.0 (B) alone and in the presence of increasing amount of CuCl$_2$$\ThetaH_2$O up to 0.004 (A) and 0.00036 (B) M concentrations ($\lambda_{exc}=\lambda_{isosbestic}=358$ (A) and 365 (B) nm).

Fig. S17 Emission spectra of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Cu$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B).
Fig. S18 Concentration profiles of TC (full lines) and its 1:1 (dashed lines) and 1:2 (dotted lines) complexes with Cu$^{2+}$ in aqueous solution at pH 2.3 (A) and 5.0 (B) obtained by Global Analysis of the fluorescence titrations.