Supplementary Information

A tug-of-war between electronic excitation and confinement in a dynamical context

Utpal Sarkar, Munmun Khatua and Pratim Kumar Chattaraj*

*Department of Physics, Assam University, Silchar-788011, India.

Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India.

*Author for correspondence : email : pkc@chem.iitkgp.ernet.in

Fig. S1. Time evolution of chemical potential (µ, in a.u.) when helium atom in ground state (G.S.) and excited state (E.S.) is placed in intense laser field. (Amplitude = 0.01 a.u.). Black line represents unconfined system and red line represents confined system. Weizsäcker and Fermi-Amaldi functionals are used in these cases.
Fig. S2. Time evolution of chemical hardness (\(\eta \), in a.u.) when helium atom in ground state (G.S.) and excited state (E.S.) is placed in intense laser field. (Amplitude = 0.01 a.u.). Black line represents unconfined system and red line represents confined system.

Fig. S3. Time evolution of polarizability (\(\alpha \), in a.u.) when helium atom in ground state (G.S.) and excited state (E.S.) is placed in intense laser field. (Amplitude = 0.01 a.u.). Black line represents unconfined system and red line represents confined system.
Fig. S4. Time evolution of hardness (η, in a.u.) and polarizability (α, in a.u.) during a collision process between a proton and helium atom in ground state and excited state. Black line represents unconfined system and red line represents confined system.