Supplementary Information

Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over CuY zeolite: An operando SSITKA/DRIFTS/MS study

Jana Engeldinger, Manfred Richter and Ursula Bentrup*

Experimental

For the SSITKA experiments with 16O$_2$/18O$_2$ and 12CO/13CO different gas dosing systems were used the detailed flow diagrams of which are shown in Fig. S1a, and S1b. The following gases and gas mixtures were used: 5 vol.% 12CO/He, 5 vol.% 16O$_2$/He, and 1 vol. % Ne/He (Air Liquide), 13CO (pure) and 5 vol.% 18O$_2$/He (Linde). MeOH was dosed using a saturator (14°C) with He (cf. Fig. S1a, b).

The general feed composition was 5.1 vol.% MeOH / 2.5 vol.% CO / 1.2 vol.% O$_2$ balanced with He. In the experiments with Ne as marker the mixture additionally contained 0.2 vol.% Ne. The switching from the normal to the isotopic labelled gas mixture was done by a four-way valve realizing a constant flow rate of 25 ml min$^{-1}$.

Fig. S1a Scheme of gas dosing system applied for SSITKA/DRIFTS/MS with 16O$_2$/18O$_2$.
Interaction of the CuY catalyst with 16O_2/18O_2

It was checked if the oxygen of the zeolite lattice or the CuO_x agglomerates can be exchanged with gaseous oxygen at reaction temperature of 150°C. If 16O_2 is replaced by 18O_2 under steady state conditions a simultaneous increase of the MS signals of 18O_2 and the tracer Ne was observed 30 sec after switching whereas the MS signal intensity of 16O_2 decreases in parallel (Fig. S2). Because no 16O18O was detected an exchange between lattice oxygen of both the zeolite and oxidic Cu species with gas phase oxygen can be excluded.

Fig. S2 MS signal intensities of $^{16/18}$O_2, $^{16/18}$O_2, $^{18/18}$O_2 and the tracer Ne versus time; switching from 16O_2 to 18O_2 at time = 0.
Interaction of the CuY catalyst with 12CO/13CO

After switching from the 12CO/He to the 13CO/He gas mixture the DRIFT spectra shown in Fig. S3a were obtained. The bands at 2160/2144/2112 cm$^{-1}$ obtained after 30 min exposure to the 12CO/He feed are assigned to Cu(I)$^{−}$12CO modes of Cu(I) carbonyls at different sites. After switching to 13CO/He a rapid intensity decrease of these bands is observed accompanied by the appearance of new ones at 2110/2097/2062 cm$^{-1}$. The analysis of the respective integral band intensities (cf. Fig. S3a) in dependence on time demonstrates the quick 12CO/13CO exchange (Fig. S3b).

Comparing the interaction of the CuY catalyst with MeOH/CO and MeOH/CO/O$_2$

Comparing the amounts of MF, DMC, and CO$_2$ formed during 120 min exposure the catalyst to 5.1 vol.% MeOH/2.5 vol.% 12CO/He and to 5.1 vol.% MeOH/2.5 vol.% 12CO/1.2 vol.% O$_2$/He at 150°C it is clearly seen that CO oxidation is preferred in the presence of oxygen (Fig. S4). The formation of DMC is lowered while the increased MF formation points to a higher extent of unselective MeOH oxidation. In the absence of oxygen (MeOH/CO/He feed) the MF formation proceeds by participation of lattice oxygen supplied by CuO$_x$. Because no additional oxygen is dosed the MF formation decreases with time.
Fig. S4 MS signal intensities of MF, DMC, and CO$_2$ versus time measured during 120 min exposure the catalyst to a 5.1 vol.% MeOH/2.5 vol.% 12CO/He feed and to 5.1 vol.% MeOH/2.5 vol.% 12CO/1.2 vol.% O$_2$/He feed at 150°C, respectively.