Molecular insight into the high selectivity of double-walled carbon nanotubes

Piotr Kowalczyk*

Nanochemistry Research Institute, Department of Chemistry, Curtin University of

Technology, P.O. Box U1987, Perth, 6845 Western Australia, Australia

Corresponding author footnote (*To whom correspondence should be addressed):

Dr Piotr Kowalczyk

Tel: +61 8 9266 7800

E-mail: <u>Piotr.Kowalczyk@curtin.edu.au</u>

Number of pages: 13 Number of Tables: 6 Number of Figures: 9

1. Force fields

Carbon dioxide	$\sigma_{\rm ff}$ (Å)	$\epsilon_{\mathrm{ff}}/k_{\mathrm{B}}\left(\mathrm{K} ight)$	l _{CO} (Å)	$l_{q}\left(e ight)$
	C: 2.824	C: 28.68		$C \cdot 0.664$
	O: 3.026	O: 82.0	1.162	C. 0.004
	C-O: 2.925	C-O: 48.495		0: -0.332

Table 1. Lennard-Jones parameters and partial charges for the 3-site carbon dioxide model: C-O denotes LJ parameters obtained from Lorentz-Berthelot mixing rule, l_{CO} is the C-O bond length.

	$\sigma_{\rm ff}$ (Å)	$\epsilon_{\mathrm{ff}}/k_{\mathrm{B}}\left(\mathrm{K} ight)$	l _{CH} (Å)	$l_{q}(e)$
Methane	C: 3.4	C: 55.055		H: 0.165
Wiethane	H: 2.65	H: 7.901	1.09	$\begin{array}{c} \mathbf{n} \\ 0 \\ $
	C-H: 3.025	С-Н: 30.6		C0.00

Table 2. Lennard-Jones parameters and partial charges for the 5-site methane model: C-H denotes LJ parameters fitted to experimental data, l_{CH} is the C-H bond length.

	σ _{ff} (Å)	$\epsilon_{\mathrm{ff}}/k_{\mathrm{B}}\left(\mathrm{K} ight)$	l ₀₀ (Å)	$l_{q}(e)$
Oxygen	O: 3.1062	O: 43.183	0.9699	O: -0.40405 COM: 0.8081

Table 3. Lennard-Jones parameters and partial charges for the 2-site oxygen model:COM denotes centre of mass, l_{OO} is the O-O bond length.

	σ _{ff} (Å)	$\epsilon_{\mathrm{ff}}/\mathrm{k}_{\mathrm{B}}\left(\mathrm{K} ight)$	l _{NN} (Å)	$l_{q}(e)$
Nitrogen	N: 3.31	N: 36.0	1.1	N: -0.482
				COM: 0.964

Table 4. Lennard-Jones parameters and partial charges for the 2-site nitrogen model:COM denotes centre of mass, l_{NN} is the N-N bond length.

	σ _{ff} (Å)	$\epsilon_{\rm ff}/k_{\rm B}\left(K ight)$	l _{HH} (Å)	l _{LL} (Å)	l _q (e)
Hydrogen	L: 2.37031	L: 2.16726			Ц. 0 2722
	COM: 3.15528	COM: 12.76532	0.742 0.726	COM: -0.7464	
	L-COM: 2.762795	L-COM: 5.259826			

Table 5. Lennard-Jones parameters and partial charges for the 5-site hydrogen model: COM denotes centre of mass, L is the additional LJ site, l_{HH} is the H-H bond length, l_{LL} is the L-L bond length, L-COM denotes LJ parameters obtained from Lorentz-Berthelot mixing rule.

	$\sigma_{\rm ff}$ (Å)	$\epsilon_{\mathrm{ff}}/k_{\mathrm{B}}\left(\mathrm{K} ight)$	l _{CO} (Å)	$l_{q}\left(e ight)$
Carbon	C: 3.49	C: 22.8		$C \cdot 0.0203$
monoxide	O: 3.13	O: 63.5	1.128	0: 0.0203
	C-O: 3.31	C-O: 38.05		00.0203

Table 6. Lennard-Jones parameters and partial charges for the 2-site carbon monoxide model: C-O denotes LJ parameters obtained from Lorentz-Berthelot mixing rule, l_{CO} is the C-O bond length.

2. Force fields validation using thermodynamics data

We estimated the average density from the following expression,

$$\rho \left(\text{mmolcm}^{-3} \right) = 10000 \left\langle \rho \right\rangle / 6.0223 \tag{18}$$

where $\langle ... \rangle$ denotes an ensemble average, $\langle \rho \rangle = N / \langle V(Å) \rangle$ is the average number density, and N denotes a number of molecules. Additionally, for selected adsorbates and state points, we computed isothermal compressibility and coefficient of thermal expansion from the fluctuation formulas,

$$\kappa = -1/V \left(\frac{\partial V}{\partial p} \right)_{N,T} = \left(\left\langle V^2 \right\rangle - \left\langle V \right\rangle^2 \right) / k_b T \left\langle V \right\rangle$$
(2S)

$$\alpha = 1/V \left(\frac{\partial V}{\partial T} \right)_{N,p} = \left(\langle VH \rangle - \langle V \rangle \langle H \rangle \right) / k_b T^2 \langle V \rangle$$
(38)

$$H = E(fluid) + pV = \sum_{a < b} E_{ab} + pV$$
(4S)

where E_{ab} is the total potential energy between particle *a* and *b*, *T* denotes temperature, *p* is the pressure, *H* is the enthalpy, *R* is the universal gas constant, and k_b denotes Boltzmann constant.

Figure 1S. Comparison of the experimental equation of states for carbon dioxide (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (open squares), 320 (open triangles), and 340 K (open stars).

Figure 2S. Comparison of the experimental equation of states for methane (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (open squares), 320 (open triangles), and 340 K (open stars).

Figure 3S. Comparison of the experimental equation of states for oxygen (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (open squares), 320 (open triangles), and 340 K (open stars).

Figure 4S. Comparison of the experimental equation of states for nitrogen (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (open squares), 320 (open triangles), and 340 K (open stars).

Figure 5S. Comparison of the experimental equation of state for hydrogen at 298 K (solid line) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (open squares), 320 (open triangles), and 340 K (open stars).

Figure 6S. The comparison of the experimental thermal expansivity of oxygen (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (triangles), 320 (squares), and 340 K (circles).

Figure 7S. The comparison of the experimental thermal expansivity of carbon dioxide (solid lines) with the results calculated from isothermal-isobaric Monte Carlo simulations at 298 (triangles), 320 (squares), and 340 K (circles).

Figure 8S. Comparison of the experimental isothermal compressibility for carbon dioxide, methane, oxygen, and nitrogen (solid lines) at 340 K with the results calculated from isothermal-isobaric Monte Carlo simulations: triangles-carbon dioxide, stars-methane, squares-oxygen, diamonds-nitrogen, and crosses-hydrogen.

T = 298 K and p = 20 Mpa

Figure 9S. Atomistic structure of CO_2 , H_2 , N_2 , and O_2 at 298 K and 20 MPa computed from isothermal-isobaric Monte Carlo simulations.