Electronic Supplementary Information

Excited-state hydrogen relay along a blended-alcohol chain as a model system of a proton wire: deuterium effect on the reaction dynamics

Sun-Young Park and Du-Jeon Jang*

School of Chemistry, Seoul National University, NS60, Seoul 151-742, Korea

Table S1 List of abbreviations

Symbol	Word	Symbol	Word
7HQ	7-Hydroxyquinoline	ESPT	Excited-state proton transfer
7DQ	Deuterated 7HQ	ESDT	Excited-state deuteron transfer
ROH	Normal alcohol	H bond	Hydrogen bond
ROD^a	Deuterated alcohol	K	Association constant
N	Normal species of 7DQ	α	Proton-donating ability (acidity)
T	Tautomeric species of 7DQ	β	Proton-accepting ability (basicity)
Nc	Cyclic 7DQ·(ROD) ₂ complex	k_{PT}	Rate constant of ESPT
\mathbf{S}^b	Relatively strong-acidic alcohol in Nc	$k_{ m DT}$	Rate constant of ESDT
\mathbf{W}^b	Relatively weak-acidic alcohol in Nc	KIE^c	Kinetic isotope effect

^a MeOD, EtOD, and BuOD are symbols for deuterated methanol, ethanol, and *tert*-butanol, respectively.

^b In a blended alcohol chain. ^c Calculated as $k_{\rm PT}/k_{\rm DT}$.

Table S2 Alcohol-dependent K and k_{DT} in n-heptane

Alcohol	$lpha^a$	$oldsymbol{eta}^a$	K/M^{-2}	$k_{ m DT}^{-1}/ m ps$	KIE^b
Methanol	0.93	0.62	$8400^{c} (9100)^{d}$	430	6.8
Ethanol	0.83	0.77	5200 (6800)	560	7.8
tert-Butanol	0.68	1.01	3400 (4200)	920	5.6

^a Proton-donating (α) and -accepting abilities (β), which signify the acidity and the basicity, respectively, of ROH because the values of ROD are not available in literatures. ^{46–48} ^b Kinetic isotope effect calculated as $k_{\text{PT}}/k_{\text{DT}}$. ³⁴ ^c For 7DQ·(ROD)₂. ³³ ^d For 7HQ·(ROH)₂. ³³

Table S3 Fluorescence kinetic constants of 7DQ in ROD-added *n*-heptane^a

	N* fluorescence decay		T* fluorescence	
$Alcohol^b$	$ au_{ m fast}^c/ m ps$	$ au_{ m slow}/ m ps$	$ au_{ m rise}/ m ps$	$ au_{ m decay}/ m ps$
MeOD	430	$1800 (10\%)^d$	430	4900
EtOD	560	1700 (13%)	560	5300
BuOD	920	1600 (13%)	920	5000

^aN* and T* fluorescence were monitored at 420 nm and 550 nm, respectively, after excitation of Nc at 355 nm. ^b The concentration of each alcohol was kept at 30 mM in *n*-heptane. ^c ESDT time $(k_{\rm DT}^{-1})$. Initial amplitude percentage of the slow decay component.