# Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics # This journal is © The Owner Societies 2012 data_global _journal_name_full Phys.Chem.Chem.Phys.(PCCP) _journal_coden_Cambridge 1326 _journal_volume ? _journal_page_first ? _journal_year ? _publ_contact_author_name 'Dr Gabor Molnar' _publ_contact_author_email molnar@lcc-toulouse.fr _publ_section_title ; High-Pressure Spin-Crossover in a Dinuclear Fe(II) Complex ; loop_ _publ_author_name G.Molnar P.Guionneau H.Shepherd P.Rosa N.Casati L.Vendier ; J.-F.Letard ; A.Bousseksou # Attachment '- new_cif_all.cif' #TrackingRef '- new_cif_all.cif' #====================================================================== data_ambient _database_code_depnum_ccdc_archive 'CCDC 857565' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 15.670(7) _cell_length_b 8.175(10) _cell_length_c 18.648(7) _cell_angle_alpha 90.00 _cell_angle_beta 110.21(5) _cell_angle_gamma 90.00 _cell_volume 2242(3) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 996 _cell_measurement_theta_max 28.0406 _cell_measurement_theta_min 2.0900 _exptl_absorpt_correction_mu 0.000 _exptl_absorpt_correction_T_max 0.386 _exptl_absorpt_correction_T_min 0.552 _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.490 0.563 range of gasket transmission (min-max) 0.788 0.981 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour ? _exptl_crystal_density_diffrn 1.462 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description 'crystal fills hole of diamond-cell gasket' _exptl_crystal_F_000 1012 _exptl_crystal_preparation 'mounted in a diamond-anvil cell ' _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.18 _exptl_special_details ; The sample was placed inside a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80 degrees. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. No pressure was applied to the sample during the measurement. ; _diffrn_ambient_temperature 295(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 5537 _diffrn_reflns_av_R_equivalents 0.1415 _diffrn_reflns_av_sigmaI/netI 0.1081 _diffrn_reflns_limit_h_min -13 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -15 _diffrn_reflns_limit_l_max 15 _diffrn_reflns_theta_min 2.09 _diffrn_reflns_theta_max 17.22 _reflns_number_total 902 _reflns_number_gt 621 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'see _refine_special_details' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 Angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of constraints and restraints were used in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 The standard deviations used in this restraint and the maximum distance over which the restraint applies are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1509P)^2^+11.1374P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 902 _refine_ls_number_parameters 99 _refine_ls_number_restraints 33 _refine_ls_R_factor_all 0.1461 _refine_ls_R_factor_gt 0.0966 _refine_ls_wR_factor_ref 0.2896 _refine_ls_wR_factor_gt 0.2391 _refine_ls_goodness_of_fit_ref 1.109 _refine_ls_restrained_S_all 1.092 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.56786(19) 0.3920(6) 0.81788(14) 0.058(2) Uani 1 1 d . . . S2 S 0.2877(4) 0.1103(13) 0.8010(3) 0.091(5) Uani 1 1 d . . . S1 S 0.8860(4) 0.5419(15) 0.9081(4) 0.112(5) Uani 1 1 d . . . N1 N 0.6253(7) 0.342(2) 0.9376(5) 0.058(6) Uiso 1 1 d G . . C8 C 0.6688(9) 0.195(2) 0.9636(7) 0.060(6) Uiso 1 1 d GU . . C7 C 0.7086(9) 0.1660(18) 1.0416(8) 0.067(6) Uiso 1 1 d GU . . H7 H 0.7378 0.0670 1.0590 0.081 Uiso 1 1 calc R . . C6 C 0.7049(8) 0.285(2) 1.0936(5) 0.066(6) Uiso 1 1 d GU . . H6 H 0.7316 0.2660 1.1458 0.079 Uiso 1 1 calc R . . C5 C 0.6614(9) 0.433(2) 1.0676(7) 0.059(6) Uiso 1 1 d GU . . H5 H 0.6589 0.5127 1.1024 0.071 Uiso 1 1 calc R . . C4 C 0.6216(8) 0.4616(18) 0.9896(8) 0.051(5) Uiso 1 1 d GU . . N2 N 0.5378(8) 0.611(2) 0.8737(7) 0.054(6) Uiso 1 1 d G . . C3 C 0.5754(9) 0.599(2) 0.9546(7) 0.059(6) Uiso 1 1 d GU . . C2 C 0.5596(9) 0.749(2) 0.9860(6) 0.061(6) Uiso 1 1 d GU . . H2 H 0.5772 0.7746 1.0377 0.073 Uiso 1 1 calc R . . C1 C 0.5123(10) 0.8547(19) 0.9245(9) 0.072(7) Uiso 1 1 d GU . . H1 H 0.4935 0.9609 0.9289 0.086 Uiso 1 1 calc R . . N7 N 0.4988(8) 0.769(2) 0.8551(6) 0.072(6) Uiso 1 1 d G . . H7A H 0.4718 0.8067 0.8098 0.087 Uiso 1 1 calc R . . C18 C 0.3762(15) 0.211(4) 0.8014(10) 0.057(7) Uiso 1 1 d . . . C17 C 0.7768(16) 0.504(4) 0.8643(11) 0.063(7) Uiso 1 1 d . . . N3 N 0.6324(8) 0.1484(18) 0.8308(8) 0.064(6) Uiso 1 1 d G . . C9 C 0.6768(10) 0.093(2) 0.9068(6) 0.067(6) Uiso 1 1 d GU . . C10 C 0.7206(9) -0.057(2) 0.9035(7) 0.082(7) Uiso 1 1 d GU . . H10 H 0.7547 -0.1199 0.9452 0.099 Uiso 1 1 calc R . . C11 C 0.7034(10) -0.0949(18) 0.8254(9) 0.076(7) Uiso 1 1 d GU . . H11 H 0.7242 -0.1867 0.8070 0.091 Uiso 1 1 calc R . . N8 N 0.6489(8) 0.032(2) 0.7805(5) 0.070(6) Uiso 1 1 d G . . H8 H 0.6292 0.0377 0.7314 0.084 Uiso 1 1 calc R . . N6 N 0.4376(12) 0.299(3) 0.8011(9) 0.070(6) Uiso 1 1 d . . . N5 N 0.7012(12) 0.480(3) 0.8352(8) 0.057(6) Uiso 1 1 d . . . O1 O 0.3989(11) -0.170(3) 0.7062(11) 0.120(7) Uiso 1 1 d U . . C19 C 0.391(2) -0.143(6) 0.6337(17) 0.155(13) Uiso 1 1 d U . . H19A H 0.3411 -0.2042 0.6003 0.232 Uiso 1 1 calc R . . H19B H 0.4463 -0.1756 0.6260 0.232 Uiso 1 1 calc R . . H19C H 0.3811 -0.0281 0.6225 0.232 Uiso 1 1 calc R . . N4 N 0.5299(9) 0.448(2) 0.6966(5) 0.061(6) Uiso 1 1 d G . . C12 C 0.4719(10) 0.3451(18) 0.6418(8) 0.078(7) Uiso 1 1 d GU . . H12 H 0.4410 0.2618 0.6565 0.094 Uiso 1 1 calc R . . C13 C 0.4602(9) 0.367(2) 0.5650(7) 0.074(7) Uiso 1 1 d GU . . H13 H 0.4214 0.2982 0.5283 0.089 Uiso 1 1 calc R . . C14 C 0.5063(9) 0.491(2) 0.5430(5) 0.069(6) Uiso 1 1 d GU . . C15 C 0.5643(10) 0.5941(19) 0.5978(8) 0.081(7) Uiso 1 1 d GU . . H15 H 0.5952 0.6774 0.5831 0.097 Uiso 1 1 calc R . . C16 C 0.5761(9) 0.5723(18) 0.6746(7) 0.082(7) Uiso 1 1 d GU . . H16 H 0.6149 0.6409 0.7113 0.098 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.063(3) 0.072(7) 0.037(2) 0.002(2) 0.0154(16) 0.001(2) S2 0.090(5) 0.103(16) 0.080(5) 0.020(6) 0.031(4) -0.015(5) S1 0.069(5) 0.153(17) 0.101(5) -0.014(7) 0.014(4) -0.015(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N6 2.10(2) . ? Fe1 N5 2.126(19) . ? Fe1 N1 2.138(10) . ? Fe1 N4 2.180(9) . ? Fe1 N2 2.204(15) . ? Fe1 N3 2.209(14) . ? S2 C18 1.61(3) . ? S1 C17 1.65(2) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C9 1.383(16) . ? C8 C7 1.3900 . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.373(17) . ? N2 N7 1.4200 . ? N2 C3 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.20(3) . ? C17 N5 1.14(2) . ? N3 N8 1.4200 . ? N3 C9 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.33(3) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.554(17) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N6 Fe1 N5 178.5(9) . . ? N6 Fe1 N1 97.1(6) . . ? N5 Fe1 N1 82.4(5) . . ? N6 Fe1 N4 91.1(6) . . ? N5 Fe1 N4 89.4(6) . . ? N1 Fe1 N4 171.6(5) . . ? N6 Fe1 N2 90.6(8) . . ? N5 Fe1 N2 90.7(7) . . ? N1 Fe1 N2 75.1(6) . . ? N4 Fe1 N2 107.1(6) . . ? N6 Fe1 N3 94.3(8) . . ? N5 Fe1 N3 84.2(7) . . ? N1 Fe1 N3 72.8(6) . . ? N4 Fe1 N3 104.6(5) . . ? N2 Fe1 N3 147.8(5) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 120.5(9) . . ? C4 N1 Fe1 119.5(9) . . ? C9 C8 N1 114.7(13) . . ? C9 C8 C7 125.0(13) . . ? N1 C8 C7 120.0 . . ? C6 C7 C8 120.0 . . ? C7 C6 C5 120.0 . . ? C6 C5 C4 120.0 . . ? C3 C4 C5 127.5(12) . . ? C3 C4 N1 112.5(12) . . ? C5 C4 N1 120.0 . . ? N7 N2 C3 108.0 . . ? N7 N2 Fe1 140.3(9) . . ? C3 N2 Fe1 111.5(9) . . ? C4 C3 C2 130.6(13) . . ? C4 C3 N2 121.4(13) . . ? C2 C3 N2 108.0 . . ? C1 C2 C3 108.0 . . ? C2 C1 N7 108.0 . . ? N2 N7 C1 108.0 . . ? N6 C18 S2 174(3) . . ? N5 C17 S1 179(2) . . ? N8 N3 C9 108.0 . . ? N8 N3 Fe1 135.4(9) . . ? C9 N3 Fe1 116.3(9) . . ? C8 C9 C10 136.4(13) . . ? C8 C9 N3 115.6(13) . . ? C10 C9 N3 108.0 . . ? C11 C10 C9 108.0 . . ? C10 C11 N8 108.0 . . ? N3 N8 C11 108.0 . . ? C18 N6 Fe1 163(2) . . ? C17 N5 Fe1 159.9(17) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 120.8(8) . . ? C16 N4 Fe1 118.4(8) . . ? C13 C12 N4 120.0 . . ? C12 C13 C14 120.0 . . ? C15 C14 C13 120.0 . . ? C15 C14 C14 122(2) . 3_666 ? C13 C14 C14 118(2) . 3_666 ? C14 C15 C16 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.665 _diffrn_reflns_theta_full 17.22 _diffrn_measured_fraction_theta_full 0.665 _refine_diff_density_max 0.465 _refine_diff_density_min -0.435 _refine_diff_density_rms 0.092 #====================================================================== data_2.5-kbar _database_code_depnum_ccdc_archive 'CCDC 857566' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 15.409(11) _cell_length_b 8.078(7) _cell_length_c 18.56(3) _cell_angle_alpha 90.00 _cell_angle_beta 110.54(13) _cell_angle_gamma 90.00 _cell_volume 2163(4) _cell_formula_units_Z 2 _cell_measurement_reflns_used 758 _cell_measurement_temperature 295(2) _cell_measurement_theta_max 28.1160 _cell_measurement_theta_min 2.5164 _exptl_absorpt_correction_mu 0.000 _exptl_absorpt_correction_T_max 0.386 _exptl_absorpt_correction_T_min 0.555 _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.490 0.564 range of gasket transmission (min-max) 0.787 0.985 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour . _exptl_crystal_density_diffrn 1.515 _exptl_crystal_density_meas . _exptl_crystal_density_method 'not measured' _exptl_crystal_description 'crystal fills hole of diamond-cell gasket' _exptl_crystal_F_000 1012 _exptl_crystal_preparation 'mounted in a diamond-anvil cell ' _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.18 _exptl_special_details ; Hydrostatic pressure was generated using a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80deg. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. The pressure was determined to be 2.5 kbar using the ruby fluorescence technique ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 250000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_radiation_type 'Mo K\a' _diffrn_source 'Enhance (Mo) X-ray Source' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 5247 _diffrn_reflns_av_R_equivalents 0.1324 _diffrn_reflns_av_sigmaI/netI 0.1175 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.78 _diffrn_reflns_theta_max 17.22 _reflns_number_total 927 _reflns_number_gt 611 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'see _refine_special_details' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 Angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of restraints are necessary in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 The standard deviations used in this restraint and the maximum distance over which the restraint applies are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1351P)^2^+9.2586P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 927 _refine_ls_number_parameters 99 _refine_ls_number_restraints 33 _refine_ls_R_factor_all 0.1439 _refine_ls_R_factor_gt 0.0966 _refine_ls_wR_factor_ref 0.2682 _refine_ls_wR_factor_gt 0.2305 _refine_ls_goodness_of_fit_ref 1.063 _refine_ls_restrained_S_all 1.051 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.56500(18) 0.3927(3) 0.8179(2) 0.0567(18) Uani 1 1 d . . . S2 S 0.2790(4) 0.1065(7) 0.7982(5) 0.086(3) Uani 1 1 d . . . S1 S 0.8893(4) 0.5474(8) 0.9135(5) 0.101(3) Uani 1 1 d . . . N1 N 0.6252(7) 0.3423(16) 0.9373(7) 0.051(5) Uiso 1 1 d G . . C8 C 0.6702(8) 0.1929(13) 0.9628(8) 0.057(4) Uiso 1 1 d GU . . C7 C 0.7105(7) 0.1617(11) 1.0412(9) 0.062(4) Uiso 1 1 d GU . . H7 H 0.7406 0.0618 1.0583 0.075 Uiso 1 1 calc R . . C6 C 0.7057(7) 0.2800(17) 1.0941(7) 0.060(5) Uiso 1 1 d GU . . H6 H 0.7327 0.2591 1.1466 0.072 Uiso 1 1 calc R . . C5 C 0.6607(8) 0.4294(14) 1.0686(8) 0.059(4) Uiso 1 1 d GU . . H5 H 0.6575 0.5085 1.1040 0.071 Uiso 1 1 calc R . . C4 C 0.6204(7) 0.4606(11) 0.9902(9) 0.052(4) Uiso 1 1 d GU . . N2 N 0.5396(8) 0.6100(13) 0.8781(9) 0.060(5) Uiso 1 1 d G . . C3 C 0.5776(7) 0.6060(13) 0.9597(9) 0.058(5) Uiso 1 1 d GU . . C2 C 0.5597(8) 0.7611(16) 0.9876(7) 0.056(5) Uiso 1 1 d GU . . H2 H 0.5771 0.7919 1.0391 0.067 Uiso 1 1 calc R . . C1 C 0.5105(7) 0.8610(11) 0.9233(9) 0.064(5) Uiso 1 1 d GU . . H1 H 0.4900 0.9687 0.9252 0.077 Uiso 1 1 calc R . . N7 N 0.4981(7) 0.7676(15) 0.8556(7) 0.065(6) Uiso 1 1 d G . . H7A H 0.4703 0.8007 0.8091 0.078 Uiso 1 1 calc R . . C18 C 0.3701(16) 0.210(3) 0.7987(16) 0.081(8) Uiso 1 1 d . . . C17 C 0.7767(14) 0.503(2) 0.8675(13) 0.052(6) Uiso 1 1 d . . . N3 N 0.6288(7) 0.1436(11) 0.8291(9) 0.061(5) Uiso 1 1 d G . . C9 C 0.6764(10) 0.0892(18) 0.9055(8) 0.062(5) Uiso 1 1 d GU . . C10 C 0.7254(8) -0.0577(17) 0.9020(8) 0.071(5) Uiso 1 1 d GU . . H10 H 0.7624 -0.1193 0.9439 0.085 Uiso 1 1 calc R . . C11 C 0.7081(8) -0.0940(12) 0.8233(9) 0.071(6) Uiso 1 1 d GU . . H11 H 0.7317 -0.1835 0.8046 0.085 Uiso 1 1 calc R . . N8 N 0.6484(7) 0.0304(15) 0.7782(7) 0.070(5) Uiso 1 1 d G . . H8 H 0.6277 0.0362 0.7288 0.085 Uiso 1 1 calc R . . N6 N 0.4348(11) 0.290(2) 0.8003(12) 0.073(6) Uiso 1 1 d . . . N5 N 0.7019(12) 0.4827(19) 0.8355(12) 0.073(6) Uiso 1 1 d . . . O1 O 0.4000(14) -0.143(2) 0.7077(17) 0.161(8) Uiso 1 1 d U . . C19 C 0.3915(17) -0.132(3) 0.634(2) 0.126(10) Uiso 1 1 d U . . H19A H 0.3594 -0.2271 0.6063 0.188 Uiso 1 1 calc R . . H19B H 0.4519 -0.1256 0.6297 0.188 Uiso 1 1 calc R . . H19C H 0.3571 -0.0335 0.6117 0.188 Uiso 1 1 calc R . . N4 N 0.5250(8) 0.4482(15) 0.6959(6) 0.056(5) Uiso 1 1 d G . . C12 C 0.4650(8) 0.3465(13) 0.6400(9) 0.080(5) Uiso 1 1 d GU . . H12 H 0.4320 0.2639 0.6541 0.096 Uiso 1 1 calc R . . C13 C 0.4544(8) 0.3680(16) 0.5631(8) 0.083(5) Uiso 1 1 d GU . . H13 H 0.4143 0.2999 0.5257 0.099 Uiso 1 1 calc R . . C14 C 0.5038(10) 0.4913(18) 0.5421(7) 0.075(5) Uiso 1 1 d GU . . C15 C 0.5637(9) 0.5931(14) 0.5979(10) 0.078(5) Uiso 1 1 d GU . . H15 H 0.5968 0.6756 0.5838 0.094 Uiso 1 1 calc R . . C16 C 0.5743(7) 0.5715(13) 0.6748(8) 0.087(5) Uiso 1 1 d GU . . H16 H 0.6144 0.6396 0.7122 0.105 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.066(2) 0.052(3) 0.053(5) 0.0006(16) 0.022(2) 0.0004(15) S2 0.088(5) 0.095(6) 0.076(11) 0.024(4) 0.032(5) -0.009(4) S1 0.082(5) 0.096(7) 0.113(12) -0.005(4) 0.020(5) -0.002(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N6 2.086(17) . ? Fe1 N1 2.120(12) . ? Fe1 N5 2.145(18) . ? Fe1 N4 2.175(12) . ? Fe1 N2 2.188(11) . ? Fe1 N3 2.217(9) . ? S2 C18 1.63(2) . ? S1 C17 1.68(2) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C9 1.383(14) . ? C8 C7 1.3900 . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.368(12) . ? N2 C3 1.4200 . ? N2 N7 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.18(2) . ? C17 N5 1.109(19) . ? N3 C9 1.4200 . ? N3 N8 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.34(4) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.53(2) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N6 Fe1 N1 97.6(6) . . ? N6 Fe1 N5 176.4(6) . . ? N1 Fe1 N5 82.0(6) . . ? N6 Fe1 N4 90.7(7) . . ? N1 Fe1 N4 171.2(4) . . ? N5 Fe1 N4 89.6(7) . . ? N6 Fe1 N2 93.6(6) . . ? N1 Fe1 N2 73.2(6) . . ? N5 Fe1 N2 89.6(5) . . ? N4 Fe1 N2 109.3(5) . . ? N6 Fe1 N3 91.5(5) . . ? N1 Fe1 N3 73.2(5) . . ? N5 Fe1 N3 85.0(5) . . ? N4 Fe1 N3 103.8(5) . . ? N2 Fe1 N3 146.4(6) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 120.4(8) . . ? C4 N1 Fe1 119.6(8) . . ? C9 C8 C7 124.7(13) . . ? C9 C8 N1 115.2(13) . . ? C7 C8 N1 120.0 . . ? C6 C7 C8 120.0 . . ? C7 C6 C5 120.0 . . ? C4 C5 C6 120.0 . . ? C3 C4 C5 124.2(12) . . ? C3 C4 N1 115.8(12) . . ? C5 C4 N1 120.0 . . ? C3 N2 N7 108.0 . . ? C3 N2 Fe1 116.4(8) . . ? N7 N2 Fe1 135.4(8) . . ? C4 C3 C2 137.2(12) . . ? C4 C3 N2 114.8(12) . . ? C2 C3 N2 108.0 . . ? C3 C2 C1 108.0 . . ? C2 C1 N7 108.0 . . ? C1 N7 N2 108.0 . . ? N6 C18 S2 177(2) . . ? N5 C17 S1 176(2) . . ? C9 N3 N8 108.0 . . ? C9 N3 Fe1 115.5(9) . . ? N8 N3 Fe1 135.5(9) . . ? C8 C9 N3 115.5(14) . . ? C8 C9 C10 136.3(14) . . ? N3 C9 C10 108.0 . . ? C9 C10 C11 108.0 . . ? N8 C11 C10 108.0 . . ? N3 N8 C11 108.0 . . ? C18 N6 Fe1 168.0(18) . . ? C17 N5 Fe1 156(2) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 121.8(8) . . ? C16 N4 Fe1 117.2(8) . . ? N4 C12 C13 120.0 . . ? C14 C13 C12 120.0 . . ? C13 C14 C15 120.0 . . ? C13 C14 C14 120(2) . 3_666 ? C15 C14 C14 120(2) . 3_666 ? C16 C15 C14 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.706 _diffrn_reflns_theta_full 17.22 _diffrn_measured_fraction_theta_full 0.706 _refine_diff_density_max 0.366 _refine_diff_density_min -0.422 _refine_diff_density_rms 0.087 #====================================================================== data_6-kbar _database_code_depnum_ccdc_archive 'CCDC 857567' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 15.186(19) _cell_length_b 7.967(3) _cell_length_c 18.57(3) _cell_angle_alpha 90.00 _cell_angle_beta 111.53(18) _cell_angle_gamma 90.00 _cell_volume 2090(4) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _diffrn_ambient_pressure 600000 _cell_measurement_reflns_used 652 _cell_measurement_theta_min 1.4386 _cell_measurement_theta_max 27.9016 _exptl_absorpt_coefficient_mu 0.951 _exptl_absorpt_correction_T_max ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.490 0.564 range of gasket transmission (min-max) 0.787 0.985 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour ? _exptl_crystal_density_diffrn 1.555 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description ? _exptl_crystal_F_000 996 _exptl_crystal_size_max 0.23 _exptl_crystal_size_mid 0.19 _exptl_crystal_size_min 0.13 _exptl_special_details ; Hydrostatic pressure was generated using a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80deg. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. The pressure was determined to be 6 kbar using the ruby fluorescence technique ; _diffrn_ambient_temperature 295(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_radiation_type 'Mo K\a' _diffrn_source 'Enhance (Mo) X-ray Source' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 2768 _diffrn_reflns_av_R_equivalents 0.0983 _diffrn_reflns_av_sigmaI/netI 0.1121 _diffrn_reflns_limit_h_min -10 _diffrn_reflns_limit_h_max 10 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 2.17 _diffrn_reflns_theta_max 17.22 _reflns_number_total 654 _reflns_number_gt 435 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'see _refine_special_details' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 Angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of restraints are necessary in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 ISOR 0.01 0.02 S1 S2 Fe1 The standard deviations used in this restraint (and the maximum distance over which the restraint applies in the SIMU instructuction) are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1061P)^2^+22.3275P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 654 _refine_ls_number_parameters 99 _refine_ls_number_restraints 51 _refine_ls_R_factor_all 0.1389 _refine_ls_R_factor_gt 0.0886 _refine_ls_wR_factor_ref 0.2592 _refine_ls_wR_factor_gt 0.2014 _refine_ls_goodness_of_fit_ref 1.108 _refine_ls_restrained_S_all 1.090 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.5622(4) 0.3919(4) 0.8175(3) 0.067(4) Uani 1 1 d U . . S2 S 0.2730(8) 0.1040(8) 0.7947(6) 0.092(8) Uani 1 1 d U . . S1 S 0.8907(7) 0.5518(9) 0.9168(6) 0.089(8) Uani 1 1 d U . . N1 N 0.6236(13) 0.3420(17) 0.9373(9) 0.045(6) Uiso 1 1 d G . . C8 C 0.6703(14) 0.1904(16) 0.9619(10) 0.045(6) Uiso 1 1 d GU . . C7 C 0.7123(14) 0.1558(14) 1.0406(11) 0.045(6) Uiso 1 1 d GU . . H7 H 0.7435 0.0544 1.0571 0.054 Uiso 1 1 calc R . . C6 C 0.7076(14) 0.2727(18) 1.0946(9) 0.055(7) Uiso 1 1 d GU . . H6 H 0.7356 0.2496 1.1472 0.065 Uiso 1 1 calc R . . C5 C 0.6609(14) 0.4243(16) 1.0700(10) 0.050(6) Uiso 1 1 d GU . . H5 H 0.6577 0.5026 1.1061 0.060 Uiso 1 1 calc R . . C4 C 0.6189(13) 0.4589(14) 0.9913(10) 0.045(6) Uiso 1 1 d GU . . N2 N 0.5395(13) 0.6139(14) 0.8748(10) 0.038(5) Uiso 1 1 d G . . C3 C 0.5770(16) 0.6057(15) 0.9570(10) 0.047(6) Uiso 1 1 d GU . . C2 C 0.5592(16) 0.762(2) 0.9859(9) 0.055(7) Uiso 1 1 d GU . . H2 H 0.5763 0.7905 1.0378 0.067 Uiso 1 1 calc R . . C1 C 0.5106(15) 0.8665(16) 0.9217(11) 0.064(8) Uiso 1 1 d GU . . H1 H 0.4904 0.9757 0.9241 0.076 Uiso 1 1 calc R . . N7 N 0.4984(14) 0.7750(15) 0.8530(9) 0.056(6) Uiso 1 1 d G . . H7A H 0.4710 0.8110 0.8064 0.068 Uiso 1 1 calc R . . C18 C 0.362(3) 0.208(3) 0.8001(19) 0.045(8) Uiso 1 1 d . . . C17 C 0.781(3) 0.508(3) 0.8728(19) 0.055(8) Uiso 1 1 d . . . N3 N 0.6273(12) 0.1440(15) 0.8251(11) 0.063(7) Uiso 1 1 d G . . C9 C 0.6732(16) 0.0873(19) 0.9024(10) 0.044(6) Uiso 1 1 d GU . . C10 C 0.7250(16) -0.0600(18) 0.9005(10) 0.058(7) Uiso 1 1 d GU . . H10 H 0.7616 -0.1229 0.9432 0.070 Uiso 1 1 calc R . . C11 C 0.7111(13) -0.0943(17) 0.8220(12) 0.060(8) Uiso 1 1 d GU . . H11 H 0.7370 -0.1836 0.8043 0.072 Uiso 1 1 calc R . . N8 N 0.6507(13) 0.0317(19) 0.7754(9) 0.062(7) Uiso 1 1 d G . . H8 H 0.6316 0.0389 0.7258 0.075 Uiso 1 1 calc R . . N6 N 0.428(2) 0.288(2) 0.8014(17) 0.061(7) Uiso 1 1 d . . . N5 N 0.700(2) 0.481(2) 0.8364(16) 0.061(7) Uiso 1 1 d . . . O1 O 0.398(3) -0.124(3) 0.698(2) 0.147(10) Uiso 1 1 d U . . C19 C 0.398(4) -0.134(4) 0.624(3) 0.157(17) Uiso 1 1 d U . . H19A H 0.4072 -0.2487 0.6125 0.235 Uiso 1 1 calc R . . H19B H 0.4490 -0.0668 0.6206 0.235 Uiso 1 1 calc R . . H19C H 0.3391 -0.0937 0.5879 0.235 Uiso 1 1 calc R . . N4 N 0.5230(12) 0.4528(18) 0.6956(9) 0.050(6) Uiso 1 1 d G . . C12 C 0.4621(12) 0.3481(16) 0.6394(12) 0.073(8) Uiso 1 1 d GU . . H12 H 0.4287 0.2647 0.6535 0.088 Uiso 1 1 calc R . . C13 C 0.4513(14) 0.3680(19) 0.5623(10) 0.072(8) Uiso 1 1 d GU . . H13 H 0.4106 0.2979 0.5246 0.086 Uiso 1 1 calc R . . C14 C 0.5014(14) 0.493(2) 0.5413(9) 0.055(7) Uiso 1 1 d GU . . C15 C 0.5622(12) 0.5974(18) 0.5975(11) 0.062(7) Uiso 1 1 d GU . . H15 H 0.5957 0.6808 0.5835 0.075 Uiso 1 1 calc R . . C16 C 0.5731(11) 0.5775(17) 0.6747(10) 0.068(8) Uiso 1 1 d GU . . H16 H 0.6138 0.6476 0.7123 0.082 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.072(5) 0.047(2) 0.053(5) -0.004(2) -0.010(4) 0.002(2) S2 0.089(10) 0.073(5) 0.087(11) 0.021(5) 0.001(9) -0.011(5) S1 0.055(9) 0.087(5) 0.095(11) -0.008(5) -0.008(9) -0.002(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N1 2.109(15) . ? Fe1 N6 2.11(4) . ? Fe1 N5 2.12(3) . ? Fe1 N2 2.156(16) . ? Fe1 N4 2.173(18) . ? Fe1 N3 2.190(13) . ? S2 C18 1.56(4) . ? S1 C17 1.61(3) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C7 1.3900 . ? C8 C9 1.39(2) . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.371(13) . ? N2 C3 1.4200 . ? N2 N7 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.18(5) . ? C17 N5 1.18(3) . ? N3 C9 1.4200 . ? N3 N8 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.38(8) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.52(4) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N1 Fe1 N6 96.1(10) . . ? N1 Fe1 N5 82.0(10) . . ? N6 Fe1 N5 176.5(7) . . ? N1 Fe1 N2 73.9(6) . . ? N6 Fe1 N2 94.0(10) . . ? N5 Fe1 N2 88.3(9) . . ? N1 Fe1 N4 170.4(9) . . ? N6 Fe1 N4 93.4(10) . . ? N5 Fe1 N4 88.5(10) . . ? N2 Fe1 N4 107.3(6) . . ? N1 Fe1 N3 75.4(7) . . ? N6 Fe1 N3 92.6(8) . . ? N5 Fe1 N3 84.1(8) . . ? N2 Fe1 N3 149.1(7) . . ? N4 Fe1 N3 102.3(7) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 119.0(8) . . ? C4 N1 Fe1 121.0(8) . . ? N1 C8 C7 120.0 . . ? N1 C8 C9 114.4(13) . . ? C7 C8 C9 125.5(13) . . ? C8 C7 C6 120.0 . . ? C5 C6 C7 120.0 . . ? C6 C5 C4 120.0 . . ? C3 C4 C5 127.8(13) . . ? C3 C4 N1 111.9(14) . . ? C5 C4 N1 120.0 . . ? C3 N2 N7 108.0 . . ? C3 N2 Fe1 114.7(8) . . ? N7 N2 Fe1 137.2(8) . . ? C4 C3 N2 118.3(14) . . ? C4 C3 C2 133.7(14) . . ? N2 C3 C2 108.0 . . ? C1 C2 C3 108.0 . . ? C2 C1 N7 108.0 . . ? C1 N7 N2 108.0 . . ? N6 C18 S2 178(3) . . ? N5 C17 S1 176(4) . . ? C9 N3 N8 108.0 . . ? C9 N3 Fe1 113.2(10) . . ? N8 N3 Fe1 137.8(11) . . ? C8 C9 C10 133.4(14) . . ? C8 C9 N3 117.9(14) . . ? C10 C9 N3 108.0 . . ? C9 C10 C11 108.0 . . ? C10 C11 N8 108.0 . . ? C11 N8 N3 108.0 . . ? C18 N6 Fe1 168.7(18) . . ? C17 N5 Fe1 156(3) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 120.0(9) . . ? C16 N4 Fe1 118.8(9) . . ? C13 C12 N4 120.0 . . ? C12 C13 C14 120.0 . . ? C13 C14 C15 120.0 . . ? C13 C14 C14 121(2) . 3_666 ? C15 C14 C14 118(2) . 3_666 ? C16 C15 C14 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.515 _diffrn_reflns_theta_full 17.00 _diffrn_measured_fraction_theta_full 0.520 _refine_diff_density_max 0.326 _refine_diff_density_min -0.355 _refine_diff_density_rms 0.087 #====================================================================== data_9-kbar _database_code_depnum_ccdc_archive 'CCDC 857568' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 14.925(9) _cell_length_b 7.861(5) _cell_length_c 18.28(2) _cell_angle_alpha 90.00 _cell_angle_beta 111.02(10) _cell_angle_gamma 90.00 _cell_volume 2002(3) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 941 _cell_measurement_theta_max 27.9470 _cell_measurement_theta_min 2.7277 _exptl_absorpt_correction_mu 0.000 _exptl_absorpt_correction_T_max 0.379 _exptl_absorpt_correction_T_min 0.555 _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.486 0.563 range of gasket transmission (min-max) 0.779 0.985 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour ? _exptl_crystal_density_diffrn 1.637 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description 'crystal fills hole of diamond-cell gasket' _exptl_crystal_F_000 1012 _exptl_crystal_preparation 'mounted in a diamond-anvil cell ' _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.18 _exptl_special_details ; The sample was placed inside a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80 deg. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. The pressure was determined to be 9 kbar using the ruby fluorescence technique ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 900000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_radiation_type 'Mo K\a' _diffrn_source 'Enhance (Mo) X-ray Source' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 4115 _diffrn_reflns_av_R_equivalents 0.1466 _diffrn_reflns_av_sigmaI/netI 0.1229 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.85 _diffrn_reflns_theta_max 17.23 _reflns_number_total 843 _reflns_number_gt 559 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_solution 'see _refine_special_details' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 Angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of restraints are necessary in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 The standard deviations used in this restraint and the maximum distance over which the restraint applies are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1180P)^2^+6.4121P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 843 _refine_ls_number_parameters 99 _refine_ls_number_restraints 33 _refine_ls_R_factor_all 0.1444 _refine_ls_R_factor_gt 0.1016 _refine_ls_wR_factor_ref 0.2583 _refine_ls_wR_factor_gt 0.2263 _refine_ls_goodness_of_fit_ref 1.134 _refine_ls_restrained_S_all 1.112 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.5630(2) 0.3898(4) 0.8192(2) 0.0536(19) Uani 1 1 d . . . S2 S 0.2687(4) 0.1120(8) 0.7967(5) 0.076(3) Uani 1 1 d . . . S1 S 0.8913(4) 0.5536(8) 0.9205(5) 0.076(3) Uani 1 1 d . . . N1 N 0.6222(7) 0.3364(17) 0.9363(7) 0.039(5) Uiso 1 1 d G . . C8 C 0.6692(8) 0.1833(14) 0.9629(9) 0.056(4) Uiso 1 1 d GU . . C7 C 0.7124(8) 0.1533(12) 1.0429(10) 0.059(4) Uiso 1 1 d GU . . H7 H 0.7439 0.0508 1.0606 0.070 Uiso 1 1 calc R . . C6 C 0.7087(8) 0.2764(18) 1.0963(7) 0.055(5) Uiso 1 1 d GU . . H6 H 0.7376 0.2563 1.1498 0.066 Uiso 1 1 calc R . . C5 C 0.6617(9) 0.4295(15) 1.0697(9) 0.056(5) Uiso 1 1 d GU . . H5 H 0.6592 0.5118 1.1055 0.067 Uiso 1 1 calc R . . C4 C 0.6185(7) 0.4595(11) 0.9898(10) 0.056(4) Uiso 1 1 d GU . . N2 N 0.5403(8) 0.6111(14) 0.8736(10) 0.052(5) Uiso 1 1 d G . . C3 C 0.5765(8) 0.6047(14) 0.9568(10) 0.058(5) Uiso 1 1 d GU . . C2 C 0.5570(9) 0.7635(18) 0.9850(7) 0.053(5) Uiso 1 1 d GU . . H2 H 0.5730 0.7937 1.0374 0.063 Uiso 1 1 calc R . . C1 C 0.5087(8) 0.8680(12) 0.9193(9) 0.054(5) Uiso 1 1 d GU . . H1 H 0.4876 0.9787 0.9210 0.065 Uiso 1 1 calc R . . N7 N 0.4984(7) 0.7738(17) 0.8505(7) 0.067(6) Uiso 1 1 d G . . H7A H 0.4715 0.8091 0.8030 0.081 Uiso 1 1 calc R . . C18 C 0.3660(14) 0.217(2) 0.8007(14) 0.049(7) Uiso 1 1 d . . . C17 C 0.7793(15) 0.510(2) 0.8713(14) 0.048(6) Uiso 1 1 d . . . N3 N 0.6256(8) 0.1438(12) 0.8260(9) 0.060(6) Uiso 1 1 d G . . C9 C 0.6766(10) 0.0821(18) 0.9028(8) 0.055(5) Uiso 1 1 d GU . . C10 C 0.7288(9) -0.0645(17) 0.8961(8) 0.059(5) Uiso 1 1 d GU . . H10 H 0.7683 -0.1301 0.9375 0.071 Uiso 1 1 calc R . . C11 C 0.7101(9) -0.0933(13) 0.8153(9) 0.060(6) Uiso 1 1 d GU . . H11 H 0.7352 -0.1810 0.7944 0.072 Uiso 1 1 calc R . . N8 N 0.6464(8) 0.0355(15) 0.7720(7) 0.055(5) Uiso 1 1 d G . . H8 H 0.6242 0.0460 0.7218 0.065 Uiso 1 1 calc R . . N6 N 0.4332(12) 0.287(2) 0.8047(12) 0.064(6) Uiso 1 1 d . . . N5 N 0.7005(12) 0.479(2) 0.8380(12) 0.061(6) Uiso 1 1 d . . . O1 O 0.3996(11) -0.1139(19) 0.6995(14) 0.104(6) Uiso 1 1 d U . . C19 C 0.3896(15) -0.130(3) 0.6191(18) 0.086(9) Uiso 1 1 d U . . H19A H 0.3640 -0.2406 0.6002 0.129 Uiso 1 1 calc R . . H19B H 0.4513 -0.1175 0.6144 0.129 Uiso 1 1 calc R . . H19C H 0.3469 -0.0441 0.5887 0.129 Uiso 1 1 calc R . . N4 N 0.5231(9) 0.4536(17) 0.6997(7) 0.056(5) Uiso 1 1 d G . . C12 C 0.4639(9) 0.3427(14) 0.6439(10) 0.074(5) Uiso 1 1 d GU . . H12 H 0.4315 0.2567 0.6590 0.089 Uiso 1 1 calc R . . C13 C 0.4533(9) 0.3604(17) 0.5656(9) 0.077(6) Uiso 1 1 d GU . . H13 H 0.4137 0.2863 0.5283 0.093 Uiso 1 1 calc R . . C14 C 0.5018(10) 0.489(2) 0.5429(7) 0.073(5) Uiso 1 1 d GU . . C15 C 0.5610(9) 0.5998(15) 0.5987(10) 0.072(5) Uiso 1 1 d GU . . H15 H 0.5935 0.6859 0.5835 0.086 Uiso 1 1 calc R . . C16 C 0.5717(8) 0.5821(14) 0.6770(9) 0.077(5) Uiso 1 1 d GU . . H16 H 0.6113 0.6563 0.7143 0.092 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.056(2) 0.056(3) 0.040(6) 0.0007(18) 0.007(3) 0.0032(16) S2 0.078(5) 0.077(6) 0.063(11) 0.023(4) 0.013(5) 0.000(3) S1 0.051(4) 0.076(6) 0.081(12) -0.009(4) 0.000(5) -0.009(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N6 2.029(17) . ? Fe1 N1 2.045(13) . ? Fe1 N5 2.076(17) . ? Fe1 N2 2.091(11) . ? Fe1 N4 2.109(12) . ? Fe1 N3 2.131(9) . ? S2 C18 1.65(2) . ? S1 C17 1.63(2) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C7 1.3900 . ? C8 C9 1.392(15) . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.337(12) . ? N2 N7 1.4200 . ? N2 C3 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.121(19) . ? C17 N5 1.141(19) . ? N3 N8 1.4200 . ? N3 C9 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.43(3) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.56(2) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N6 Fe1 N1 95.1(7) . . ? N6 Fe1 N5 175.8(7) . . ? N1 Fe1 N5 82.3(6) . . ? N6 Fe1 N2 94.8(6) . . ? N1 Fe1 N2 75.9(6) . . ? N5 Fe1 N2 87.7(5) . . ? N6 Fe1 N4 93.3(7) . . ? N1 Fe1 N4 171.4(5) . . ? N5 Fe1 N4 89.2(7) . . ? N2 Fe1 N4 105.1(6) . . ? N6 Fe1 N3 91.3(5) . . ? N1 Fe1 N3 74.8(6) . . ? N5 Fe1 N3 84.8(5) . . ? N2 Fe1 N3 150.4(7) . . ? N4 Fe1 N3 103.4(5) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 121.2(8) . . ? C4 N1 Fe1 118.8(8) . . ? C7 C8 N1 120.0 . . ? C7 C8 C9 126.5(13) . . ? N1 C8 C9 113.1(13) . . ? C8 C7 C6 120.0 . . ? C5 C6 C7 120.0 . . ? C6 C5 C4 120.0 . . ? C3 C4 C5 125.8(13) . . ? C3 C4 N1 114.1(13) . . ? C5 C4 N1 120.0 . . ? N7 N2 C3 108.0 . . ? N7 N2 Fe1 137.4(9) . . ? C3 N2 Fe1 114.5(9) . . ? C4 C3 C2 135.3(14) . . ? C4 C3 N2 116.7(14) . . ? C2 C3 N2 108.0 . . ? C3 C2 C1 108.0 . . ? N7 C1 C2 108.0 . . ? C1 N7 N2 108.0 . . ? N6 C18 S2 179(2) . . ? N5 C17 S1 179(2) . . ? N8 N3 C9 108.0 . . ? N8 N3 Fe1 134.7(9) . . ? C9 N3 Fe1 115.9(9) . . ? C8 C9 C10 137.0(14) . . ? C8 C9 N3 114.7(14) . . ? C10 C9 N3 108.0 . . ? C9 C10 C11 108.0 . . ? C10 C11 N8 108.0 . . ? N3 N8 C11 108.0 . . ? C18 N6 Fe1 173.5(18) . . ? C17 N5 Fe1 158(2) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 118.6(9) . . ? C16 N4 Fe1 119.8(9) . . ? C13 C12 N4 120.0 . . ? C14 C13 C12 120.0 . . ? C15 C14 C13 120.0 . . ? C15 C14 C14 117(2) . 3_666 ? C13 C14 C14 123(2) . 3_666 ? C14 C15 C16 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.693 _diffrn_reflns_theta_full 17.23 _diffrn_measured_fraction_theta_full 0.693 _refine_diff_density_max 0.369 _refine_diff_density_min -0.370 _refine_diff_density_rms 0.094 #====================================================================== data_13-kbar _database_code_depnum_ccdc_archive 'CCDC 857569' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 14.849(6) _cell_length_b 7.823(4) _cell_length_c 18.233(16) _cell_angle_alpha 90.00 _cell_angle_beta 111.47(7) _cell_angle_gamma 90.00 _cell_volume 1971(2) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_theta_max 20.1714 _cell_measurement_theta_min 2.7406 _exptl_absorpt_correction_mu 0.000 _exptl_absorpt_correction_T_max 0.392 _exptl_absorpt_correction_T_min 0.555 _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.493 0.563 range of gasket transmission (min-max) 0.792 0.985 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour ? _exptl_crystal_density_diffrn 1.663 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description 'crystal fills hole of diamond-cell gasket' _exptl_crystal_F_000 1012 _exptl_crystal_preparation 'mounted in a diamond-anvil cell ' _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.18 _exptl_special_details ; The sample was placed inside a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80 deg. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. The pressure was determined to be 13 kbar using the ruby fluorescence technique ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 1300000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_radiation_monochromator graphite _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 2364 _diffrn_reflns_av_R_equivalents 0.1558 _diffrn_reflns_av_sigmaI/netI 0.2233 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -12 _diffrn_reflns_limit_l_max 12 _diffrn_reflns_theta_min 2.87 _diffrn_reflns_theta_max 17.22 _reflns_number_total 828 _reflns_number_gt 402 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'see _refine_special_details' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of restraints are necessary in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 The standard deviations used in this restraint and the maximum distance over which the restraint applies are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0811P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 828 _refine_ls_number_parameters 99 _refine_ls_number_restraints 33 _refine_ls_R_factor_all 0.1959 _refine_ls_R_factor_gt 0.1092 _refine_ls_wR_factor_ref 0.2694 _refine_ls_wR_factor_gt 0.2122 _refine_ls_goodness_of_fit_ref 1.107 _refine_ls_restrained_S_all 1.062 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.5641(3) 0.3903(5) 0.8217(3) 0.053(2) Uani 1 1 d . . . S2 S 0.2675(5) 0.1179(10) 0.7971(5) 0.064(4) Uani 1 1 d . . . S1 S 0.8923(5) 0.5600(10) 0.9219(5) 0.066(4) Uani 1 1 d . . . N1 N 0.6240(9) 0.337(3) 0.9381(9) 0.056(4) Uiso 1 1 d GU . . C8 C 0.6699(11) 0.182(2) 0.9634(11) 0.056(4) Uiso 1 1 d GU . . C7 C 0.7122(9) 0.1465(17) 1.0435(13) 0.054(5) Uiso 1 1 d GU . . H7 H 0.7429 0.0423 1.0604 0.065 Uiso 1 1 calc R . . C6 C 0.7086(9) 0.267(3) 1.0983(8) 0.057(5) Uiso 1 1 d GU . . H6 H 0.7369 0.2436 1.1519 0.068 Uiso 1 1 calc R . . C5 C 0.6627(12) 0.423(2) 1.0731(13) 0.059(5) Uiso 1 1 d GU . . H5 H 0.6603 0.5036 1.1098 0.071 Uiso 1 1 calc R . . C4 C 0.6204(10) 0.4581(17) 0.9930(15) 0.057(4) Uiso 1 1 d GU . . N2 N 0.5376(11) 0.611(2) 0.8720(13) 0.056(4) Uiso 1 1 d GU . . C3 C 0.5751(10) 0.607(2) 0.9556(13) 0.060(5) Uiso 1 1 d GU . . C2 C 0.5578(10) 0.769(3) 0.9833(8) 0.058(5) Uiso 1 1 d GU . . H2 H 0.5750 0.8009 1.0357 0.070 Uiso 1 1 calc R . . C1 C 0.5095(10) 0.8731(17) 0.9167(11) 0.059(5) Uiso 1 1 d GU . . H1 H 0.4895 0.9854 0.9179 0.071 Uiso 1 1 calc R . . N7 N 0.4970(9) 0.776(2) 0.8479(8) 0.062(5) Uiso 1 1 d GU . . H7A H 0.4697 0.8104 0.8000 0.074 Uiso 1 1 calc R . . C18 C 0.3652(17) 0.219(3) 0.8015(16) 0.040(7) Uiso 1 1 d U . . C17 C 0.784(2) 0.511(3) 0.8721(18) 0.053(7) Uiso 1 1 d U . . N3 N 0.6250(10) 0.1500(16) 0.8252(13) 0.058(4) Uiso 1 1 d GU . . C9 C 0.6727(13) 0.081(3) 0.9018(10) 0.055(4) Uiso 1 1 d GU . . C10 C 0.7241(11) -0.067(2) 0.8945(11) 0.060(5) Uiso 1 1 d GU . . H10 H 0.7616 -0.1365 0.9357 0.072 Uiso 1 1 calc R . . C11 C 0.7081(11) -0.0898(16) 0.8135(13) 0.057(5) Uiso 1 1 d GU . . H11 H 0.7332 -0.1773 0.7922 0.068 Uiso 1 1 calc R . . N8 N 0.6468(10) 0.044(2) 0.7706(9) 0.056(5) Uiso 1 1 d GU . . H8 H 0.6265 0.0586 0.7204 0.067 Uiso 1 1 calc R . . N6 N 0.4341(14) 0.289(3) 0.8026(13) 0.059(5) Uiso 1 1 d U . . N5 N 0.6998(16) 0.479(3) 0.8418(14) 0.061(4) Uiso 1 1 d U . . O1 O 0.3940(12) -0.100(2) 0.6974(14) 0.077(7) Uiso 1 1 d U . . C19 C 0.3867(18) -0.137(3) 0.6192(19) 0.084(11) Uiso 1 1 d U . . H19A H 0.3990 -0.2563 0.6149 0.126 Uiso 1 1 calc R . . H19B H 0.4334 -0.0703 0.6066 0.126 Uiso 1 1 calc R . . H19C H 0.3229 -0.1091 0.5832 0.126 Uiso 1 1 calc R . . N4 N 0.5232(12) 0.455(2) 0.7025(8) 0.063(5) Uiso 1 1 d GU . . C12 C 0.4633(11) 0.3430(17) 0.6466(14) 0.068(5) Uiso 1 1 d GU . . H12 H 0.4312 0.2561 0.6620 0.082 Uiso 1 1 calc R . . C13 C 0.4514(10) 0.361(2) 0.5678(12) 0.067(6) Uiso 1 1 d GU . . H13 H 0.4113 0.2861 0.5304 0.080 Uiso 1 1 calc R . . C14 C 0.4994(14) 0.491(3) 0.5448(8) 0.068(6) Uiso 1 1 d GU . . C15 C 0.5592(12) 0.6026(19) 0.6008(14) 0.066(5) Uiso 1 1 d GU . . H15 H 0.5914 0.6894 0.5854 0.079 Uiso 1 1 calc R . . C16 C 0.5712(10) 0.585(2) 0.6796(12) 0.067(5) Uiso 1 1 d GU . . H16 H 0.6112 0.6594 0.7170 0.080 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.054(3) 0.058(5) 0.047(7) 0.001(3) 0.018(3) 0.008(3) S2 0.073(6) 0.063(9) 0.053(14) 0.021(5) 0.020(7) 0.003(5) S1 0.038(5) 0.064(9) 0.080(13) -0.014(5) 0.005(6) 0.002(4) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N6 2.00(2) . ? Fe1 N1 2.022(14) . ? Fe1 N5 2.03(2) . ? Fe1 N2 2.062(14) . ? Fe1 N3 2.077(12) . ? Fe1 N4 2.091(13) . ? S2 C18 1.63(3) . ? S1 C17 1.58(3) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C9 1.383(18) . ? C8 C7 1.3900 . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.393(16) . ? N2 N7 1.4200 . ? N2 C3 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.15(2) . ? C17 N5 1.19(2) . ? N3 C9 1.4200 . ? N3 N8 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.42(3) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.65(3) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N6 Fe1 N1 97.3(8) . . ? N6 Fe1 N5 176.6(8) . . ? N1 Fe1 N5 81.6(8) . . ? N6 Fe1 N2 94.6(7) . . ? N1 Fe1 N2 77.7(9) . . ? N5 Fe1 N2 88.3(7) . . ? N6 Fe1 N3 91.6(7) . . ? N1 Fe1 N3 76.3(8) . . ? N5 Fe1 N3 85.0(7) . . ? N2 Fe1 N3 153.8(9) . . ? N6 Fe1 N4 91.1(9) . . ? N1 Fe1 N4 171.4(7) . . ? N5 Fe1 N4 89.9(8) . . ? N2 Fe1 N4 103.3(8) . . ? N3 Fe1 N4 102.0(7) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 120.1(14) . . ? C4 N1 Fe1 119.9(14) . . ? C9 C8 C7 127(2) . . ? C9 C8 N1 113(2) . . ? C7 C8 N1 120.0 . . ? C8 C7 C6 120.0 . . ? C5 C6 C7 120.0 . . ? C6 C5 C4 120.0 . . ? C5 C4 N1 120.0 . . ? C5 C4 C3 129(2) . . ? N1 C4 C3 111(2) . . ? N7 N2 C3 108.0 . . ? N7 N2 Fe1 138.6(13) . . ? C3 N2 Fe1 113.2(13) . . ? C4 C3 C2 133.7(19) . . ? C4 C3 N2 118.3(19) . . ? C2 C3 N2 108.0 . . ? C3 C2 C1 108.0 . . ? N7 C1 C2 108.0 . . ? N2 N7 C1 108.0 . . ? N6 C18 S2 178(3) . . ? N5 C17 S1 173(3) . . ? C9 N3 N8 108.0 . . ? C9 N3 Fe1 115.3(13) . . ? N8 N3 Fe1 135.6(13) . . ? C8 C9 N3 116(2) . . ? C8 C9 C10 136(2) . . ? N3 C9 C10 108.0 . . ? C9 C10 C11 108.0 . . ? N8 C11 C10 108.0 . . ? C11 N8 N3 108.0 . . ? C18 N6 Fe1 170(2) . . ? C17 N5 Fe1 163(2) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 118.3(14) . . ? C16 N4 Fe1 120.2(14) . . ? N4 C12 C13 120.0 . . ? C14 C13 C12 120.0 . . ? C13 C14 C15 120.0 . . ? C13 C14 C14 124(3) . 3_666 ? C15 C14 C14 116(3) . 3_666 ? C16 C15 C14 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.696 _diffrn_reflns_theta_full 17.22 _diffrn_measured_fraction_theta_full 0.696 _refine_diff_density_max 0.349 _refine_diff_density_min -0.349 _refine_diff_density_rms 0.096 #====================================================================== data_16-kbar _database_code_depnum_ccdc_archive 'CCDC 857570' #TrackingRef '- new_cif_all.cif' #====================================================================== _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C36 H26 Fe2 N16 S4, 2(C H4 O)' _chemical_formula_sum 'C38 H34 Fe2 N16 S4 O2' _chemical_formula_weight 984.78 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Fe Fe 0.3463 0.8444 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' S S 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _space_group_crystal_system monoclinic _space_group_IT_number 14 _space_group_name_H-M_alt 'P 1 21/n 1' _space_group_name_Hall '-P 2yn' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, -y-1/2, z-1/2' _cell_length_a 14.80(2) _cell_length_b 7.69(2) _cell_length_c 18.15(11) _cell_angle_alpha 91.0(5) _cell_angle_beta 112.0(4) _cell_angle_gamma 89.4(2) _cell_volume 1915(13) _cell_formula_units_Z 2 _cell_measurement_temperature 295(2) _cell_measurement_theta_max 28.1440 _cell_measurement_theta_min 2.7486 _exptl_absorpt_correction_mu 0.000 _exptl_absorpt_correction_T_max 0.397 _exptl_absorpt_correction_T_min 0.555 _exptl_absorpt_correction_type Gaussian _exptl_absorpt_process_details ; Gaussian integration over a grid of 16 x 16 x 16 points = 4096 total grid points Based upon method of Burnham (1966) Data corrected for diamond-anvil cell absorption Note that exptl_absorpt_correction_tmin and _tmax the total correction factors applied to the intensities The individual factors are: range of dac transmission factors (min-max) 0.497 0.564 range of gasket transmission (min-max) 0.799 0.984 range of P media transmission (min-max) 1.000 1.000 thickness of diamond anvil 1: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 1: 0.000 mm, mu = 0.0000 mm-1 thickness of diamond anvil 2: 1.430 mm, mu = 0.2000 mm-1 thickness of platten 2: 0.000 mm, mu = 0.0000 mm-1 Gasket shadowing corrections were made based upon Gasket thickness = 220.0 microns, radius = 375.0 microns Gasket absorption coeff = 27.90 mm-1 REFLECTION WAS CONSIDERED TOTALLY OBSCURED IF FRACTION CRYSTAL ILLUMINATED WAS LESS THAN 0.20 Non-absorbing pressure medium ; _exptl_crystal_colour ? _exptl_crystal_density_diffrn 1.711 _exptl_crystal_density_meas ? _exptl_crystal_density_method 'not measured' _exptl_crystal_description 'crystal fills hole of diamond-cell gasket' _exptl_crystal_F_000 1012 _exptl_crystal_preparation 'mounted in a diamond-anvil cell ' _exptl_crystal_size_max 0.28 _exptl_crystal_size_mid 0.26 _exptl_crystal_size_min 0.18 _exptl_special_details ; The sample was placed inside a small screw-driven diamond anvil cell (DAC) equipped with conical cut diamonds with 800 micron culets; the diamonds were mounted on tungsten carbide backing seats giving an x-ray aperture of approximately 80 deg. A stainless steel gasket was pre-indented to a thickness of 180-200 microns and a hole of 400 micron was mechanically drilled through the centre of the indentation, which served as a sample chamber. The chamber was filled with a single crystal of 1, two small ruby chips and silicone oil, which served as a pressure transmitting medium. The pressure was determined to be 16 kbar using the ruby fluorescence technique ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 1600000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Xcalibur, Eos, Gemini ultra' _diffrn_measurement_method '\w scans' _diffrn_radiation_type 'Mo K\a' _diffrn_source 'Enhance (Mo) X-ray Source' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 3749 _diffrn_reflns_av_R_equivalents 0.3196 _diffrn_reflns_av_sigmaI/netI 0.1983 _diffrn_reflns_limit_h_min -11 _diffrn_reflns_limit_h_max 11 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -11 _diffrn_reflns_limit_l_max 11 _diffrn_reflns_theta_min 2.90 _diffrn_reflns_theta_max 15.85 _reflns_number_total 625 _reflns_number_gt 408 _reflns_threshold_expression >2sigma(I) _computing_cell_refinement ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_collection ; CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) ; _computing_data_reduction ; Absorb Angel (2004) J. Appl. Cryst. 37:486-492 ; _computing_molecular_graphics ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_publication_material ; O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. (2009). 42, 339-341. ; _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_structure_solution 'see _refine_special_details' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Basic models derived from the ambient pressure phases were used as a starting point for refinement of structural parameters against high pressure data (to a maximum resolution of 1.2 Angstroms) on F^2^. Anisotropic temperature factors were refined for iron and sulphur atoms only due to the relatively low resolution of the experiment. The low (2/m) symmetry of this sample results in substantially incomplete data (<65 % to 50 degrees 2theta), as reflected in the refinement statistics. Low completeness, while not unusual for high pressure single crystal data sets from small molecule (low symmetry) systems, means that a somewhat high number of restraints are necessary in the refinement of structural parameters, including AFIX 56 and AFIX 66 commands to model the aromatic rings and restraints on the Uiso of carbon atoms as follows: SIMU 0.02 0.04 3 O1 C8 C7 C6 C5 C4 C18 C3 C17 C9 C2 C10 C1 C11 C19 C12 C13 = C14 C15 C16 The standard deviations used in this restraint and the maximum distance over which the restraint applies are higher than normal, justified in light of the acknowledged limitations of the data, as described above. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1991P)^2^+15.8207P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment riding _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 625 _refine_ls_number_parameters 99 _refine_ls_number_restraints 33 _refine_ls_R_factor_all 0.1689 _refine_ls_R_factor_gt 0.1180 _refine_ls_wR_factor_ref 0.3419 _refine_ls_wR_factor_gt 0.2964 _refine_ls_goodness_of_fit_ref 1.074 _refine_ls_restrained_S_all 1.043 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Fe1 Fe 0.5645(3) 0.3932(7) 0.8231(4) 0.064(3) Uani 1 1 d . . . S2 S 0.2643(7) 0.1289(12) 0.8000(7) 0.075(5) Uani 1 1 d . . . S1 S 0.8920(6) 0.5663(12) 0.9235(7) 0.068(5) Uani 1 1 d . . . N1 N 0.6170(11) 0.338(3) 0.9349(11) 0.048(8) Uiso 1 1 d G . . C8 C 0.6631(14) 0.179(2) 0.9599(13) 0.057(6) Uiso 1 1 d GU . . C7 C 0.7071(12) 0.145(2) 1.0405(15) 0.058(6) Uiso 1 1 d GU . . H7 H 0.7379 0.0391 1.0572 0.069 Uiso 1 1 calc R . . C6 C 0.7050(12) 0.270(3) 1.0962(11) 0.056(6) Uiso 1 1 d GU . . H6 H 0.7345 0.2476 1.1502 0.067 Uiso 1 1 calc R . . C5 C 0.6590(14) 0.429(3) 1.0712(14) 0.059(6) Uiso 1 1 d GU . . H5 H 0.6576 0.5127 1.1085 0.071 Uiso 1 1 calc R . . C4 C 0.6150(12) 0.4631(19) 0.9906(16) 0.059(6) Uiso 1 1 d GU . . N2 N 0.5434(14) 0.607(2) 0.8700(16) 0.063(10) Uiso 1 1 d G . . C3 C 0.5768(12) 0.613(3) 0.9542(16) 0.061(7) Uiso 1 1 d GU . . C2 C 0.5513(13) 0.778(3) 0.9774(11) 0.059(7) Uiso 1 1 d GU . . H2 H 0.5645 0.8160 1.0293 0.071 Uiso 1 1 calc R . . C1 C 0.5021(13) 0.874(2) 0.9075(14) 0.062(8) Uiso 1 1 d GU . . H1 H 0.4775 0.9862 0.9056 0.075 Uiso 1 1 calc R . . N7 N 0.4972(12) 0.768(3) 0.8411(11) 0.062(9) Uiso 1 1 d G . . H7A H 0.4710 0.7971 0.7921 0.074 Uiso 1 1 calc R . . C18 C 0.370(2) 0.229(4) 0.8070(19) 0.039(10) Uiso 1 1 d . . . C17 C 0.777(2) 0.516(3) 0.8758(19) 0.033(10) Uiso 1 1 d . . . N3 N 0.6226(12) 0.154(2) 0.8224(15) 0.065(10) Uiso 1 1 d G . . C9 C 0.6717(16) 0.084(3) 0.8990(12) 0.057(6) Uiso 1 1 d GU . . C10 C 0.7268(14) -0.062(3) 0.8909(13) 0.059(7) Uiso 1 1 d GU . . H10 H 0.7658 -0.1327 0.9318 0.071 Uiso 1 1 calc R . . C11 C 0.7116(14) -0.083(2) 0.8092(15) 0.061(8) Uiso 1 1 d GU . . H11 H 0.7391 -0.1686 0.7873 0.074 Uiso 1 1 calc R . . N8 N 0.6472(12) 0.051(2) 0.7669(11) 0.064(9) Uiso 1 1 d G . . H8 H 0.6268 0.0670 0.7165 0.077 Uiso 1 1 calc R . . N6 N 0.4398(17) 0.296(3) 0.8080(16) 0.054(9) Uiso 1 1 d . . . N5 N 0.697(2) 0.485(3) 0.8424(19) 0.074(10) Uiso 1 1 d . . . O1 O 0.3947(15) -0.092(3) 0.6958(17) 0.083(8) Uiso 1 1 d U . . C19 C 0.385(2) -0.115(4) 0.616(2) 0.086(12) Uiso 1 1 d U . . H19A H 0.3445 -0.2140 0.5932 0.129 Uiso 1 1 calc R . . H19B H 0.4481 -0.1339 0.6135 0.129 Uiso 1 1 calc R . . H19C H 0.3558 -0.0130 0.5865 0.129 Uiso 1 1 calc R . . N4 N 0.5196(14) 0.458(3) 0.7037(11) 0.059(9) Uiso 1 1 d G . . C12 C 0.4614(13) 0.344(2) 0.6453(16) 0.078(8) Uiso 1 1 d GU . . H12 H 0.4282 0.2557 0.6587 0.093 Uiso 1 1 calc R . . C13 C 0.4530(14) 0.362(3) 0.5670(14) 0.079(8) Uiso 1 1 d GU . . H13 H 0.4141 0.2857 0.5279 0.095 Uiso 1 1 calc R . . C14 C 0.5028(16) 0.494(3) 0.5470(11) 0.080(8) Uiso 1 1 d GU . . C15 C 0.5609(14) 0.608(2) 0.6053(16) 0.075(8) Uiso 1 1 d GU . . H15 H 0.5942 0.6962 0.5919 0.090 Uiso 1 1 calc R . . C16 C 0.5694(12) 0.590(2) 0.6837(14) 0.075(8) Uiso 1 1 d GU . . H16 H 0.6083 0.6662 0.7227 0.091 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Fe1 0.072(4) 0.057(6) 0.061(9) 0.002(3) 0.024(4) 0.003(3) S2 0.084(7) 0.051(10) 0.077(16) 0.020(5) 0.014(7) 0.008(6) S1 0.058(7) 0.066(10) 0.068(16) -0.006(5) 0.012(7) 0.008(5) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Fe1 N2 1.912(19) . ? Fe1 N6 1.92(3) . ? Fe1 N1 1.94(2) . ? Fe1 N5 2.00(3) . ? Fe1 N3 2.022(16) . ? Fe1 N4 2.08(2) . ? S2 C18 1.71(3) . ? S1 C17 1.64(3) . ? N1 C8 1.3900 . ? N1 C4 1.3900 . ? C8 C9 1.36(2) . ? C8 C7 1.3900 . ? C7 C6 1.3900 . ? C6 C5 1.3900 . ? C5 C4 1.3900 . ? C4 C3 1.35(2) . ? N2 N7 1.4200 . ? N2 C3 1.4200 . ? C3 C2 1.4200 . ? C2 C1 1.4200 . ? C1 N7 1.4200 . ? C18 N6 1.15(3) . ? C17 N5 1.13(3) . ? N3 C9 1.4200 . ? N3 N8 1.4200 . ? C9 C10 1.4200 . ? C10 C11 1.4200 . ? C11 N8 1.4200 . ? O1 C19 1.41(4) . ? N4 C12 1.3900 . ? N4 C16 1.3900 . ? C12 C13 1.3900 . ? C13 C14 1.3900 . ? C14 C15 1.3900 . ? C14 C14 1.68(4) 3_666 ? C15 C16 1.3900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag N2 Fe1 N6 95.3(10) . . ? N2 Fe1 N1 78.5(12) . . ? N6 Fe1 N1 92.6(11) . . ? N2 Fe1 N5 86.0(10) . . ? N6 Fe1 N5 177.2(11) . . ? N1 Fe1 N5 85.2(11) . . ? N2 Fe1 N3 155.6(12) . . ? N6 Fe1 N3 91.7(9) . . ? N1 Fe1 N3 77.9(11) . . ? N5 Fe1 N3 86.1(9) . . ? N2 Fe1 N4 101.9(11) . . ? N6 Fe1 N4 92.1(11) . . ? N1 Fe1 N4 175.2(8) . . ? N5 Fe1 N4 90.0(12) . . ? N3 Fe1 N4 101.2(10) . . ? C8 N1 C4 120.0 . . ? C8 N1 Fe1 120.2(15) . . ? C4 N1 Fe1 119.7(15) . . ? C9 C8 N1 112(2) . . ? C9 C8 C7 127(2) . . ? N1 C8 C7 120.0 . . ? C6 C7 C8 120.0 . . ? C5 C6 C7 120.0 . . ? C4 C5 C6 120.0 . . ? C3 C4 C5 129(2) . . ? C3 C4 N1 110(2) . . ? C5 C4 N1 120.0 . . ? N7 N2 C3 108.0 . . ? N7 N2 Fe1 135.6(17) . . ? C3 N2 Fe1 116.3(17) . . ? C4 C3 C2 136(2) . . ? C4 C3 N2 115(2) . . ? C2 C3 N2 108.0 . . ? C3 C2 C1 108.0 . . ? C2 C1 N7 108.0 . . ? N2 N7 C1 108.0 . . ? N6 C18 S2 177(3) . . ? N5 C17 S1 179(3) . . ? C9 N3 N8 108.0 . . ? C9 N3 Fe1 114.3(16) . . ? N8 N3 Fe1 135.8(15) . . ? C8 C9 N3 115(2) . . ? C8 C9 C10 137(2) . . ? N3 C9 C10 108.0 . . ? C11 C10 C9 108.0 . . ? C10 C11 N8 108.0 . . ? C11 N8 N3 108.0 . . ? C18 N6 Fe1 172(3) . . ? C17 N5 Fe1 159(3) . . ? C12 N4 C16 120.0 . . ? C12 N4 Fe1 120.0(15) . . ? C16 N4 Fe1 117.8(15) . . ? C13 C12 N4 120.0 . . ? C12 C13 C14 120.0 . . ? C13 C14 C15 120.0 . . ? C13 C14 C14 119(4) . 3_666 ? C15 C14 C14 121(4) . 3_666 ? C16 C15 C14 120.0 . . ? C15 C16 N4 120.0 . . ? _diffrn_measured_fraction_theta_max 0.695 _diffrn_reflns_theta_full 15.85 _diffrn_measured_fraction_theta_full 0.683 _refine_diff_density_max 0.437 _refine_diff_density_min -0.386 _refine_diff_density_rms 0.116