Supporting Information

Band Engineered Ternary Solid Solution $\text{CdS}_x\text{Se}_{1-x}$-Sensitized Mesoscopic TiO$_2$ Solar Cells

Md. Anower Hossain, a James Robert Jennings, a Nripa Mathews, b and Qing Wang a *

a Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore 117576,
b School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798

X-ray diffraction patterns of CdS and CdSe-sensitized TiO$_2$ electrodes:

Figure S1. X-ray diffraction patterns of CdS and CdSe-sensitized TiO$_2$ electrodes made on glass microscope slides before and after heat treatment. The standard 2θ values for TiO$_2$ (Anatase), wurtzite CdS and CdSe crystals are also shown for comparison.
Photocurrent-Voltage characteristics of cells made with platinised FTO counter electrode:

Figure S2. IPCE (a) and j-V characteristics (b) of solar cells made with 6CdS_xSe_1-x and 5CdS/5CdSe-sensitized TiO_2 photoanodes (5 \(\mu m \) thick TiO_2 electrodes without scattering layers) with platinised FTO counter electrodes for impedance study.

Table S1. Characteristics of 6CdS_xSe_1-x and 5CdS/5CdSe-sensitized TiO_2 solar cells under simulated AM1.5 100 mW cm\(^{-2}\) illumination made with platinised FTO cathode and TiO_2 electrodes (5 \(\mu m \) transparent Degussa P25 layers) without scattering layers.

<table>
<thead>
<tr>
<th>Photoanode</th>
<th>Sensitizer</th>
<th>Voc (V)</th>
<th>(j_{sc}) (mA.cm(^{-2}))</th>
<th>ff (%)</th>
<th>(\eta) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO_2 (5 (\mu m))</td>
<td>6CdS_xSe_1-x</td>
<td>0.539</td>
<td>12.57</td>
<td>43.83</td>
<td>2.97</td>
</tr>
<tr>
<td></td>
<td>5CdS/5CdSe</td>
<td>0.563</td>
<td>12.70</td>
<td>41.76</td>
<td>3.00</td>
</tr>
</tbody>
</table>