Supporting information for

Highly ordered staging structural interface between LiFePO$_4$ and FePO$_4$

Liumin Suo,a Wenze Han,b Xia Lu,a Lin Gu,a,* Yong-Sheng Hu,a Hong Li,a,* Dongfeng Chen,b, Liquan Chena, Susumu Tsukimoto,c Yuichi Ikuharacde

a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

b China Institute of Atomic Energy, Beijing 102413, China.

c WPI advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.

d Institute of Engineering Innovation, The University of Tokyo Tokyo 113-8654, Japan

e Nanostructures Research Laboratory, Japan Fine Ceramic Centre, Nagoya 456-8587, Japan

Figure S1 XRD patterns of (a) the pristine Nb-doped LiFePO$_4$ and (b) chemical delithiation (10 atom %) LiFePO$_4$ sample (nominal).
Figure S2 Rietveld patterns of Nb-doped LiFePO$_4$ sample. Observed (red circles) and calculated (black solid line), Bragg reflection peaks (brown solid ticks) and the difference curve (below) are shown. The structural parameters are $a = 4.6943$ Å, $b = 10.3270$ Å and $c = 6.0048$ Å, R_p: 8.17, R_wp: 10.7, R_{exp}: 3.16 (not corrected for background).

<table>
<thead>
<tr>
<th>Atoms</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Biso.</th>
<th>Occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>5.02627</td>
<td>0.47858</td>
</tr>
<tr>
<td>Nb</td>
<td>0.01719</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>0.97556</td>
<td>0.28238</td>
<td>0.25000</td>
<td>0.10024</td>
<td>0.46296</td>
</tr>
<tr>
<td>P1</td>
<td>0.41722</td>
<td>0.09310</td>
<td>0.25000</td>
<td>0.64297</td>
<td>0.5</td>
</tr>
<tr>
<td>O1</td>
<td>0.74860</td>
<td>0.10563</td>
<td>0.25000</td>
<td>0.69497</td>
<td>0.5</td>
</tr>
<tr>
<td>O2</td>
<td>0.20553</td>
<td>0.45332</td>
<td>0.25000</td>
<td>1.19660</td>
<td>0.5</td>
</tr>
<tr>
<td>O3</td>
<td>0.28404</td>
<td>0.16680</td>
<td>0.04259</td>
<td>1.28510</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Figure S3. TEM image of the pristine Nb-doped LiFePO$_4$

Figure S4. Charge and discharge curves of the as-prepared Nb-doped LiFePO$_4$ sample
Figure S5 (a) The unmarked ABF-STEM image (Figure 1a) at [010] zone axis and (b) schematic views of the mismatch of two phases (LiFePO$_4$, FePO$_4$).
Figure S6 The unmarked ABF-STEM image (Figure 2a) at [010] zone axis.
Figure S7 Filtered STEM images of Nb-doped LiFePO₄. (a) ABF mode, (b) HADDF mode with Nb occupied in lithium site) and (c) HADDF mode with no Nb occupied in lithium site at [010] zone axis.
Table S1 Standard ICP elemental analysis of the pristine Nb-doped LiFePO$_4$ and chemical delithiation (10 atom % Lithium ion) of Nb-doped LiFePO$_4$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atomic ratio of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li</td>
</tr>
<tr>
<td>The initial design</td>
<td>0.90</td>
</tr>
<tr>
<td>2% Nb-doped LiFePO$_4$</td>
<td>0.91</td>
</tr>
<tr>
<td>Chemical delithiated 10%</td>
<td>0.81</td>
</tr>
</tbody>
</table>