Electronic Supplementary Information:

Insights into the effects of graphene oxide sheet on the conformation and activity of glucose oxidase: towards developing a nanomaterial–based protein conformation assay

Qian Shao, Ping Wu, Xiaoqing Xu, Hui Zhang and Chenxin Cai*

* Corresponding author, E-mail: cxcai@njnu.edu.cn (C. Cai); Tel: 86-25-85891780; Fax: 86-25-85891767.
1. XPS spectrum of GO

![Image of XPS spectrum of GO](image)

![Image of XPS spectra of C1s in GO](image)

Fig. S1 (A) XPS spectrum of the prepared GO sheets; (B) is XPS spectra of C1s in GO and their related curve-fitted components.
2. FAD fluorescence emission spectra

Fig. S2 The FAD fluorescence emission spectra of native GOx (150 µg mL\(^{-1}\), a) and the GOx–GO bioconjugate system with GOx concentration fixed at 150 µg mL\(^{-1}\) and GO concentration of 2.5 (b), 5 (c), 10 (d), 20 (e), and 25 µg mL\(^{-1}\) (f) in 0.1 M PBS (pH 7.0). The excitation wavelength is 373 nm.
3. Fluorescence emission spectra of GO

![Fluorescence emission spectra of GO](image)

Fig. S3 The fluorescence emission spectra of GO in PBS at a concentration of 1.25, 2.5, 5, 7.5, 10, 12.5, and 15 μg mL$^{-1}$, respectively. The excitation wavelength is 279 nm.
4. CD spectra of the GOx–GO bioconjugate system at different interaction time

Fig. S4 Far–UV CD spectra of native GOx (300 μg mL\(^{-1}\), a) and GOx–GO bioconjugate system with GOx concentration at 300 μg mL\(^{-1}\) and GO concentration at 25 μg mL\(^{-1}\) in PBS (0.1 M, pH 7.0) for the interaction time of 4 (b), 12 (c), 24 (d), and 48 h (e), respectively.
5. CD spectra of native GOx and GOx–GO bioconjugate system at different solution pH

![CD spectral graphs](image)

Fig. S5 Far–UV CD spectra of native GOx (300 μg mL⁻¹, a) and GOx–GO bioconjugate system with the GOx concentration at 300 μg mL⁻¹ and GO concentration at 25 μg mL⁻¹ in PBS (0.1 M) at pH of 6.0 (A), 7.0 (B), and 8.0 (C), respectively.
6. CD spectra of native GOx at different ionic strength

![CD spectra graph]

Fig. S6 Far–UV CD spectra of native GOx (300 μg mL⁻¹) in PBS (0.1 M, pH 7.0) under the presence of 0 (a), 0.5 (b), 1.0 (c), and 2.0 M NaCl (d), respectively.

![Relative intensities graph]

Fig. S7 Relative amount of α–helix (A), β–sheet (B), β–turn (C), and random coil (D) of native GOx in PBS (0.1 M, pH 7.0) under the presence of 0 (a), 0.5 (b), 1.0 (c), and 2.0 M NaCl (d), respectively. The data were obtained from CD spectra presented in Fig. S6 using a CDNN program. The data represented here are obtained by averaging the five independent measurements (n = 5). The error bar represents the standard deviation.
7. Effects of ionic strength on the disperse ability of GO and the GOx–GO bioconjugates

Fig. S8 Pictures of GO (a–d) and GOx–GO bioconjugates (e–h) in PBS (0.1 M, pH 7.0) containing different concentration of NaCl. The concentration of NaCl is 0 (a, e), 0.5 (b, f), 1.0 (c, g), and 2.0 M (d, h). The concentration of GO in PBS is 25 μg mL⁻¹. The GOx–GO bioconjugates were prepared with GOx at 300 μg mL⁻¹ and GO at 25 μg mL⁻¹.
8. Dependent of absorbance of the enzymatic system on reaction time

![Graph showing absorbance at 436 nm](image)

Fig. S9 Dependent of absorbance of oxidized form of o–dianisidine generating in the catalytic system at 436 nm on reaction time for native GOx (0.6 μg mL⁻¹, a) and GOx–GO bioconjugate system with the concentrations of GO of 2.5 (b), 5 (c), and 25 μg mL⁻¹ (d) in PBS (0.1 M, pH 7.0). The catalytic system contains 16.7 mg mL⁻¹ β–D–glucose, 8 μg mL⁻¹ HRP, and 53 μg mL⁻¹ o–dianisidine. The volume of the system is 3.1 mL. Curve (e) displays the absorbance of the system with native GOx being replaced by GO (25 μg mL⁻¹). The data represented here are obtained by averaging the five independent measurements (n = 5). The error bar represents the standard deviation.