Figure S1. XRD patterns of $\text{Sr}_x\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$ with $x > 1.00$ recorded after calcined at 1000 $^\circ$C for 5 h and exposed in ambient air for 20 min (Relative Humidity = (70 ± 2) %).

For $\text{Sr}_{1.05}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$, the max diffraction peak at 29.1$^\circ$ is corresponding to an unknown phase and another visible diffraction peak appears at 6.2$^\circ$. The unknown phase just present in $\text{Sr}_{1.05}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$ may be SrCoO_4 (PDF# 44-1064), but it is not sure because only two diffraction peaks can be identified. Furthermore, for $\text{Sr}_{1.10}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$ and $\text{Sr}_{1.20}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$, the peak at $2\theta = 29.1^\circ$ disappears but the diffraction peak of 6.2$^\circ$ gets stronger, which correspond to the moisture-sensitive phase $\text{Sr}_3(\text{Co, Fe})_2\text{O}_7\!_\delta$ (space groupI4/mmm) not $\text{Sr}_2(\text{Co, Fe})_4\text{O}_{10\!_\delta}$ or $\text{Sr}_4(\text{Co, Fe})_3\text{O}_{10\!_\delta}$, in respect that $\text{Sr}_2(\text{Co, Fe})_4\text{O}_{10\!_\delta}$ and $\text{Sr}_4(\text{Co, Fe})_3\text{O}_{10\!_\delta}$ are stable only at low temperatures. Exposed to ambient air just for 20 min, there is $\text{Sr}_3(\text{Co, Fe})_2\text{O}_7\!_\delta\cdot2\text{H}_2\text{O}$ in samples $\text{Sr}_x\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_3\!_\delta$ ($x = 1.05, 1.00$ and 1.20), which agree with the results about $\text{Sr}_3\text{Fe}_2\text{O}_7\!_\delta$ in the literature. Water molecular is prone to insert two neighbor layers of $\text{Sr}_3(\text{Co, Fe})_2\text{O}_7\!_\delta$ to form $\text{Sr}_3(\text{Co, Fe})_2\text{O}_7\!_\delta\cdot2\text{H}_2\text{O}$, and then the volume of the material expands.
Figure S2. Cross-section of Sr$_x$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ sintered at 1100 °C for 5 h in air.

Note that the A-site cation excess pellets were quickly taken from 150 °C oven to the SEM chamber in order to minimize the adsorption of water molecular from ambient air.

It is seen that the relative density decreases with increasing of x, similar to the variation of (Ba$_{0.5}$Sr$_{0.5}$)$_{1-x}$Co$_{0.8}$Fe$_{0.2}$O$_{3-\delta}$ reported in literature.3 Such a behavior was attributed to an increased concentration of the A-site vacancies which enhanced the diffusion of the A-site cations during the sintering. The cobalt-iron oxide in
Sr$_{0.80}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ is a sintering aid to enhance the densification of samples. However, under-sintering behavior appeared in Sr$_{1.05}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ, Sr$_{1.10}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ and Sr$_{1.20}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ. It implies that Sr$_3$Fe$_2$O$_7$-δ is a sintering barrier causing the relative density decreasing.

![Figure S3](image)

Figure S3 Temperature dependence of the polarization resistance of various Sr$_x$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ cathodes in air.

Arrhenius plots of the polarization resistances of electrodes are shown in Figure S3 obtained from results of Figure 4b in text. The activation energy E_a is corresponding to the energy of the oxygen reduction reactions. Note that the polarization process is related to the rate of the oxygen reduction reactions, which can be affected by E_a and pre-exponential factor. From x of 1.20 to 0.80, the values of E_a for $x > 1.00$ are totally smaller than the ones for $x \leq 1.00$, although the polarization resistances for $x > 1.00$ are obviously bigger than the ones for $x \leq 1.00$. E_a of Sr$_{1.20}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ is equal to 0.82 eV while E_a of Sr$_{1.00}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ is as higher as 1.16 eV. However, the polarization resistances of Sr$_{1.20}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ are several times bigger than the values of Sr$_{1.00}$Co$_{0.8}$Fe$_{0.2}$O$_3$-δ during operating temperatures. It is clear that for the rate of oxygen surface exchange, E_a is one of the primary factors but not the only one.
Figure S4. Cell voltage and power density as a function of current density at various temperatures obtained on Ni-SDC supported SDC electrolyte with a cathode of SrₓCo₀.₈Fe₀.₂O₃₋δ (x = 0.80 - 1.20), and Impedance spectra for the single cells with cathode SrₓCo₀.₈Fe₀.₂O₃₋δ. Air was supplied to the cathode side (300 ml min⁻¹ at STP) and humidified H₂ (3 vol. % H₂O) was supplied to the anode side (100 ml min⁻¹ at STP). A voltage amplitude of 10 mV was applied for AC impedance spectroscopy in the frequency range from 10² Hz to 10⁵ Hz.
References

