Photoinduced water splitting with oxotitanium porphyrin: a computational study

Andrzej L. Sobolewski and Wolfgang Domecke

Electronic Supplementary Information
<table>
<thead>
<tr>
<th>Orbital</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$24a_1$</td>
<td>radical at the equilibrium geometry of the 2A_1 state ($R_{OH} \approx 1.0$ Å, left column) and at the dissociation limit ($R_{OH} = 2.7$ Å, right column). Only one component of the degenerate (e) orbitals is shown.</td>
</tr>
<tr>
<td>$11b_1$</td>
<td></td>
</tr>
<tr>
<td>$12b_2$</td>
<td></td>
</tr>
<tr>
<td>$25e$</td>
<td></td>
</tr>
<tr>
<td>$23a_1$</td>
<td></td>
</tr>
<tr>
<td>$24e$</td>
<td></td>
</tr>
<tr>
<td>$10b_1$</td>
<td></td>
</tr>
<tr>
<td>$7a_2$</td>
<td></td>
</tr>
<tr>
<td>$22a_1$</td>
<td></td>
</tr>
</tbody>
</table>

Fig. S1. The Kohn-Sham frontier orbitals of the TiPOH' radical at the equilibrium geometry of the 2A_1 state ($R_{OH} \approx 1.0$ Å, left column) and at the dissociation limit ($R_{OH} = 2.7$ Å, right column). Only one component of the degenerate (e) orbitals is shown.
Cartesian coordinates (in Ångstrom) of the $S_0(C_{4v})$ equilibrium geometry of TiOP optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.613368</td>
</tr>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-2.232562</td>
</tr>
<tr>
<td>N</td>
<td>-1.452033</td>
<td>1.452033</td>
<td>-0.032815</td>
</tr>
<tr>
<td>N</td>
<td>1.452033</td>
<td>-1.452033</td>
<td>-0.032815</td>
</tr>
<tr>
<td>N</td>
<td>1.452033</td>
<td>1.452033</td>
<td>-0.032815</td>
</tr>
<tr>
<td>C</td>
<td>-3.490306</td>
<td>2.523372</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>-3.490306</td>
<td>-2.523372</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>3.490306</td>
<td>-2.523372</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>3.490306</td>
<td>2.523372</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>-2.813352</td>
<td>1.248881</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>-2.813352</td>
<td>-1.248881</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>2.813352</td>
<td>1.248881</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>-1.248881</td>
<td>2.813352</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>-1.248881</td>
<td>-2.813352</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>1.248881</td>
<td>-2.813352</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>1.248881</td>
<td>2.813352</td>
<td>0.024067</td>
</tr>
<tr>
<td>C</td>
<td>2.523372</td>
<td>3.490306</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>-2.523372</td>
<td>3.490306</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>-2.523372</td>
<td>-3.490306</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>2.523372</td>
<td>-3.490306</td>
<td>0.111980</td>
</tr>
<tr>
<td>C</td>
<td>-3.441909</td>
<td>0.000000</td>
<td>0.032758</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>-3.441909</td>
<td>0.032758</td>
</tr>
<tr>
<td>C</td>
<td>3.441909</td>
<td>0.000000</td>
<td>0.032758</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>3.441909</td>
<td>0.032758</td>
</tr>
<tr>
<td>H</td>
<td>2.651598</td>
<td>4.569465</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>-2.651598</td>
<td>-4.569465</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>-2.651598</td>
<td>4.569465</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>2.651598</td>
<td>-4.569465</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>4.569465</td>
<td>2.651598</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>4.569465</td>
<td>-2.651598</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>-4.569465</td>
<td>-2.651598</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>-4.569465</td>
<td>2.651598</td>
<td>0.177983</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>4.532646</td>
<td>0.083480</td>
</tr>
<tr>
<td>H</td>
<td>4.532646</td>
<td>0.000000</td>
<td>0.083480</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>-4.532646</td>
<td>0.083480</td>
</tr>
<tr>
<td>H</td>
<td>-4.532646</td>
<td>0.000000</td>
<td>0.083480</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the $S_0(C_{4v})$ equilibrium geometry of TiOP optimized with the MP2/cc-pVDZ(TZVP at Ti) method.

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.552751</td>
</tr>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-2.198537</td>
</tr>
<tr>
<td>N</td>
<td>-1.456704</td>
<td>1.456704</td>
<td>-0.017651</td>
</tr>
<tr>
<td>N</td>
<td>-1.456704</td>
<td>-1.456704</td>
<td>-0.017651</td>
</tr>
<tr>
<td>N</td>
<td>1.456704</td>
<td>1.456704</td>
<td>-0.017651</td>
</tr>
<tr>
<td>C</td>
<td>-3.503630</td>
<td>2.530150</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>-3.503630</td>
<td>-2.530150</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>3.503630</td>
<td>2.530150</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>-2.820875</td>
<td>1.255546</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>-2.820875</td>
<td>-1.255546</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>2.820875</td>
<td>1.255546</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>2.820875</td>
<td>-1.255546</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>-1.255546</td>
<td>2.820875</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>-1.255546</td>
<td>-2.820875</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>1.255546</td>
<td>-2.820875</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>1.255546</td>
<td>2.820875</td>
<td>0.029636</td>
</tr>
<tr>
<td>C</td>
<td>2.530150</td>
<td>3.503630</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>-2.530150</td>
<td>3.503630</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>-2.530150</td>
<td>-3.503630</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>2.530150</td>
<td>-3.503630</td>
<td>0.106304</td>
</tr>
<tr>
<td>C</td>
<td>-3.450557</td>
<td>0.000000</td>
<td>0.030346</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>-3.450557</td>
<td>0.030346</td>
</tr>
<tr>
<td>C</td>
<td>3.450557</td>
<td>0.000000</td>
<td>0.030346</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>3.450557</td>
<td>0.030346</td>
</tr>
<tr>
<td>H</td>
<td>2.658771</td>
<td>4.586004</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>-2.658771</td>
<td>-4.586004</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>-2.658771</td>
<td>4.586004</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>2.658771</td>
<td>-4.586004</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>4.586004</td>
<td>2.658771</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>4.586004</td>
<td>-2.658771</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>-4.586004</td>
<td>-2.658771</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>-4.586004</td>
<td>2.658771</td>
<td>0.165263</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>4.545418</td>
<td>0.072721</td>
</tr>
<tr>
<td>H</td>
<td>4.545418</td>
<td>0.000000</td>
<td>0.072721</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>-4.545418</td>
<td>0.072721</td>
</tr>
<tr>
<td>H</td>
<td>-4.545418</td>
<td>0.000000</td>
<td>0.072721</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the $S_0(C_I)$ equilibrium geometry of the TiOP-H$_2$O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

FINAL HEAT OF FORMATION = -1989.026460

<table>
<thead>
<tr>
<th>Atom</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.156436</td>
<td>0.195496</td>
<td>2.026217</td>
</tr>
<tr>
<td>C</td>
<td>-0.951193</td>
<td>0.284651</td>
<td>2.842239</td>
</tr>
<tr>
<td>C</td>
<td>-0.533178</td>
<td>0.340437</td>
<td>4.223527</td>
</tr>
<tr>
<td>C</td>
<td>1.259440</td>
<td>0.198695</td>
<td>2.853320</td>
</tr>
<tr>
<td>C</td>
<td>-2.273484</td>
<td>0.348540</td>
<td>2.400043</td>
</tr>
<tr>
<td>C</td>
<td>-2.703695</td>
<td>0.367889</td>
<td>1.071487</td>
</tr>
<tr>
<td>N</td>
<td>-1.880809</td>
<td>0.288764</td>
<td>-0.031985</td>
</tr>
<tr>
<td>C</td>
<td>-2.693723</td>
<td>0.383981</td>
<td>-1.142234</td>
</tr>
<tr>
<td>C</td>
<td>-4.069854</td>
<td>0.519334</td>
<td>-0.724727</td>
</tr>
<tr>
<td>C</td>
<td>-4.075458</td>
<td>0.509894</td>
<td>0.643483</td>
</tr>
<tr>
<td>C</td>
<td>-2.249788</td>
<td>0.382002</td>
<td>-2.467751</td>
</tr>
<tr>
<td>C</td>
<td>-0.921702</td>
<td>0.322274</td>
<td>-2.898159</td>
</tr>
<tr>
<td>N</td>
<td>0.177597</td>
<td>0.217445</td>
<td>-2.072287</td>
</tr>
<tr>
<td>C</td>
<td>1.289493</td>
<td>0.233297</td>
<td>-2.887196</td>
</tr>
<tr>
<td>C</td>
<td>0.877583</td>
<td>0.343397</td>
<td>-4.267637</td>
</tr>
<tr>
<td>C</td>
<td>-0.488707</td>
<td>0.398361</td>
<td>-4.274366</td>
</tr>
<tr>
<td>C</td>
<td>2.614122</td>
<td>0.186165</td>
<td>-2.443714</td>
</tr>
<tr>
<td>C</td>
<td>3.043734</td>
<td>0.152134</td>
<td>-1.114437</td>
</tr>
<tr>
<td>C</td>
<td>4.422849</td>
<td>0.179722</td>
<td>-0.684317</td>
</tr>
<tr>
<td>C</td>
<td>4.415793</td>
<td>0.170887</td>
<td>0.682933</td>
</tr>
<tr>
<td>C</td>
<td>3.032316</td>
<td>0.138494</td>
<td>1.098421</td>
</tr>
<tr>
<td>N</td>
<td>2.216035</td>
<td>0.122945</td>
<td>-0.012366</td>
</tr>
<tr>
<td>Ti</td>
<td>0.144449</td>
<td>-0.369623</td>
<td>-0.024239</td>
</tr>
<tr>
<td>O</td>
<td>0.073565</td>
<td>-1.999658</td>
<td>-0.029158</td>
</tr>
<tr>
<td>C</td>
<td>2.588637</td>
<td>0.156204</td>
<td>2.423414</td>
</tr>
<tr>
<td>O</td>
<td>-2.017888</td>
<td>-2.883453</td>
<td>1.695169</td>
</tr>
<tr>
<td>H</td>
<td>1.502532</td>
<td>0.312947</td>
<td>5.088730</td>
</tr>
<tr>
<td>H</td>
<td>-1.153757</td>
<td>0.494887</td>
<td>-5.130844</td>
</tr>
<tr>
<td>H</td>
<td>5.267767</td>
<td>0.196189</td>
<td>1.360101</td>
</tr>
<tr>
<td>H</td>
<td>-4.917659</td>
<td>0.621741</td>
<td>-1.400032</td>
</tr>
<tr>
<td>H</td>
<td>-1.208348</td>
<td>0.418544</td>
<td>5.073728</td>
</tr>
<tr>
<td>H</td>
<td>-4.928895</td>
<td>0.601478</td>
<td>1.313155</td>
</tr>
<tr>
<td>H</td>
<td>1.556421</td>
<td>0.384769</td>
<td>-5.117668</td>
</tr>
<tr>
<td>H</td>
<td>5.281716</td>
<td>0.214111</td>
<td>-1.352300</td>
</tr>
<tr>
<td>H</td>
<td>3.356738</td>
<td>0.168253</td>
<td>3.199143</td>
</tr>
<tr>
<td>H</td>
<td>-3.046319</td>
<td>0.408742</td>
<td>3.168130</td>
</tr>
<tr>
<td>H</td>
<td>-3.014501</td>
<td>0.466824</td>
<td>-3.242445</td>
</tr>
<tr>
<td>H</td>
<td>3.390409</td>
<td>0.209571</td>
<td>-3.210976</td>
</tr>
<tr>
<td>H</td>
<td>-2.675742</td>
<td>-2.790484</td>
<td>0.990299</td>
</tr>
<tr>
<td>H</td>
<td>-1.184215</td>
<td>-2.807808</td>
<td>1.192130</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the S_0(Cs) equilibrium geometry of the TiOP-H$_2$O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

FINAL HEAT OF FORMATION = -1989.024830

<table>
<thead>
<tr>
<th>Element</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4.441178</td>
<td>0.197661</td>
<td>-0.683619</td>
</tr>
<tr>
<td>C</td>
<td>3.059746</td>
<td>0.160289</td>
<td>-1.106404</td>
</tr>
<tr>
<td>N</td>
<td>2.238221</td>
<td>0.131880</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.059746</td>
<td>0.160289</td>
<td>1.106404</td>
</tr>
<tr>
<td>C</td>
<td>4.441178</td>
<td>0.197661</td>
<td>0.683619</td>
</tr>
<tr>
<td>C</td>
<td>2.622121</td>
<td>0.187540</td>
<td>-2.433505</td>
</tr>
<tr>
<td>C</td>
<td>1.294770</td>
<td>0.226903</td>
<td>-2.870274</td>
</tr>
<tr>
<td>N</td>
<td>0.187147</td>
<td>0.209175</td>
<td>-2.050075</td>
</tr>
<tr>
<td>C</td>
<td>-0.916665</td>
<td>0.298301</td>
<td>-2.871139</td>
</tr>
<tr>
<td>C</td>
<td>-0.491060</td>
<td>0.369323</td>
<td>-4.250261</td>
</tr>
<tr>
<td>C</td>
<td>0.875292</td>
<td>0.325463</td>
<td>-4.249770</td>
</tr>
<tr>
<td>C</td>
<td>-2.243331</td>
<td>0.343911</td>
<td>-2.434872</td>
</tr>
<tr>
<td>C</td>
<td>-2.681753</td>
<td>0.344832</td>
<td>-1.107537</td>
</tr>
<tr>
<td>N</td>
<td>-1.862498</td>
<td>0.273014</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.681753</td>
<td>0.344832</td>
<td>1.107537</td>
</tr>
<tr>
<td>C</td>
<td>-4.058393</td>
<td>0.455894</td>
<td>0.684211</td>
</tr>
<tr>
<td>C</td>
<td>-4.058393</td>
<td>0.455894</td>
<td>-0.684211</td>
</tr>
<tr>
<td>C</td>
<td>-2.243331</td>
<td>0.343911</td>
<td>2.434872</td>
</tr>
<tr>
<td>C</td>
<td>-0.916665</td>
<td>0.298301</td>
<td>2.871139</td>
</tr>
<tr>
<td>C</td>
<td>-0.491060</td>
<td>0.369323</td>
<td>4.250261</td>
</tr>
<tr>
<td>C</td>
<td>0.875292</td>
<td>0.325463</td>
<td>4.249770</td>
</tr>
<tr>
<td>C</td>
<td>1.294770</td>
<td>0.226903</td>
<td>2.870274</td>
</tr>
<tr>
<td>N</td>
<td>0.187147</td>
<td>0.209175</td>
<td>2.050075</td>
</tr>
<tr>
<td>Ti</td>
<td>0.167529</td>
<td>-0.365444</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>0.074207</td>
<td>-1.991548</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.622121</td>
<td>0.187540</td>
<td>2.433505</td>
</tr>
<tr>
<td>O</td>
<td>-2.545353</td>
<td>-3.266553</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.549644</td>
<td>0.365715</td>
<td>5.103386</td>
</tr>
<tr>
<td>H</td>
<td>-1.161107</td>
<td>0.452581</td>
<td>-5.104128</td>
</tr>
<tr>
<td>H</td>
<td>5.296595</td>
<td>0.232432</td>
<td>1.356012</td>
</tr>
<tr>
<td>H</td>
<td>-4.911446</td>
<td>0.534020</td>
<td>-1.355913</td>
</tr>
<tr>
<td>H</td>
<td>-1.161107</td>
<td>0.452581</td>
<td>5.104128</td>
</tr>
<tr>
<td>H</td>
<td>-4.911446</td>
<td>0.534020</td>
<td>1.355913</td>
</tr>
<tr>
<td>H</td>
<td>1.549644</td>
<td>0.365715</td>
<td>-5.103386</td>
</tr>
<tr>
<td>H</td>
<td>5.296595</td>
<td>0.232432</td>
<td>-1.356012</td>
</tr>
<tr>
<td>H</td>
<td>3.393990</td>
<td>0.210773</td>
<td>3.205324</td>
</tr>
<tr>
<td>H</td>
<td>-3.012877</td>
<td>0.410650</td>
<td>3.206349</td>
</tr>
<tr>
<td>H</td>
<td>-3.012877</td>
<td>0.410650</td>
<td>-3.206349</td>
</tr>
<tr>
<td>H</td>
<td>3.393990</td>
<td>0.210773</td>
<td>-3.205324</td>
</tr>
<tr>
<td>H</td>
<td>-2.962548</td>
<td>-2.393788</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.597260</td>
<td>-3.038488</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the \(^1\)LMCT\((A''')\) inner minimum geometry of the TiOP-H\(_2\)O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

<table>
<thead>
<tr>
<th></th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.217970</td>
<td>0.005757</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.043919</td>
<td>0.008894</td>
<td>-1.106615</td>
</tr>
<tr>
<td>C</td>
<td>4.423927</td>
<td>-0.020039</td>
<td>-0.684857</td>
</tr>
<tr>
<td>C</td>
<td>4.423927</td>
<td>-0.020039</td>
<td>0.684857</td>
</tr>
<tr>
<td>C</td>
<td>3.043919</td>
<td>0.008894</td>
<td>1.106615</td>
</tr>
<tr>
<td>C</td>
<td>2.608839</td>
<td>0.078708</td>
<td>-2.434093</td>
</tr>
<tr>
<td>C</td>
<td>1.285115</td>
<td>0.194519</td>
<td>-2.870064</td>
</tr>
<tr>
<td>N</td>
<td>0.179575</td>
<td>0.215526</td>
<td>-2.047990</td>
</tr>
<tr>
<td>C</td>
<td>-0.916315</td>
<td>0.368320</td>
<td>-2.869564</td>
</tr>
<tr>
<td>C</td>
<td>-0.489206</td>
<td>0.439128</td>
<td>-4.249529</td>
</tr>
<tr>
<td>C</td>
<td>0.873767</td>
<td>0.331772</td>
<td>-4.249919</td>
</tr>
<tr>
<td>C</td>
<td>-2.241748</td>
<td>0.463088</td>
<td>-2.434896</td>
</tr>
<tr>
<td>C</td>
<td>-2.684300</td>
<td>0.461917</td>
<td>-1.108092</td>
</tr>
<tr>
<td>N</td>
<td>-1.868882</td>
<td>0.322523</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.684300</td>
<td>0.461917</td>
<td>1.108092</td>
</tr>
<tr>
<td>C</td>
<td>-4.050123</td>
<td>0.652799</td>
<td>0.685358</td>
</tr>
<tr>
<td>C</td>
<td>-4.050123</td>
<td>0.652799</td>
<td>-0.685358</td>
</tr>
<tr>
<td>C</td>
<td>-2.241748</td>
<td>0.463088</td>
<td>2.434896</td>
</tr>
<tr>
<td>C</td>
<td>-0.916315</td>
<td>0.368320</td>
<td>2.869564</td>
</tr>
<tr>
<td>N</td>
<td>0.179575</td>
<td>0.215526</td>
<td>2.047990</td>
</tr>
<tr>
<td>C</td>
<td>1.285115</td>
<td>0.194519</td>
<td>2.870064</td>
</tr>
<tr>
<td>C</td>
<td>0.873767</td>
<td>0.331772</td>
<td>4.249919</td>
</tr>
<tr>
<td>C</td>
<td>-0.489206</td>
<td>0.439128</td>
<td>4.249529</td>
</tr>
<tr>
<td>Ti</td>
<td>0.131835</td>
<td>-0.396629</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-0.039860</td>
<td>-2.267372</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.608839</td>
<td>0.078708</td>
<td>2.434093</td>
</tr>
<tr>
<td>O</td>
<td>-2.535637</td>
<td>-3.205349</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.548897</td>
<td>0.349351</td>
<td>5.103950</td>
</tr>
<tr>
<td>H</td>
<td>-1.154113</td>
<td>0.561957</td>
<td>-5.102904</td>
</tr>
<tr>
<td>H</td>
<td>5.281705</td>
<td>-0.025325</td>
<td>1.355457</td>
</tr>
<tr>
<td>H</td>
<td>-4.898836</td>
<td>0.781632</td>
<td>-1.355040</td>
</tr>
<tr>
<td>H</td>
<td>-1.154113</td>
<td>0.561957</td>
<td>5.102904</td>
</tr>
<tr>
<td>H</td>
<td>-4.898836</td>
<td>0.781632</td>
<td>1.355040</td>
</tr>
<tr>
<td>H</td>
<td>1.548897</td>
<td>0.349351</td>
<td>-5.103950</td>
</tr>
<tr>
<td>H</td>
<td>5.281705</td>
<td>-0.025325</td>
<td>-1.355457</td>
</tr>
<tr>
<td>H</td>
<td>3.382104</td>
<td>0.075025</td>
<td>3.205296</td>
</tr>
<tr>
<td>H</td>
<td>-3.005343</td>
<td>0.581805</td>
<td>3.206488</td>
</tr>
<tr>
<td>H</td>
<td>-3.005343</td>
<td>0.581805</td>
<td>-3.206488</td>
</tr>
<tr>
<td>H</td>
<td>3.382104</td>
<td>0.075025</td>
<td>-3.205296</td>
</tr>
<tr>
<td>H</td>
<td>-2.723584</td>
<td>-2.255903</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.557570</td>
<td>-3.241183</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the 1LMCT(A') inner minimum geometry of the TiOP-H$_2$O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

FINAL HEAT OF FORMATION = -1988.926440

<table>
<thead>
<tr>
<th>Element</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.251476</td>
<td>0.069270</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.075645</td>
<td>0.078049</td>
<td>-1.104335</td>
</tr>
<tr>
<td>C</td>
<td>4.459380</td>
<td>0.085549</td>
<td>-0.683651</td>
</tr>
<tr>
<td>C</td>
<td>4.459380</td>
<td>0.085549</td>
<td>0.683651</td>
</tr>
<tr>
<td>C</td>
<td>3.075645</td>
<td>0.078049</td>
<td>1.104335</td>
</tr>
<tr>
<td>C</td>
<td>2.639591</td>
<td>0.098773</td>
<td>-2.432673</td>
</tr>
<tr>
<td>C</td>
<td>1.312617</td>
<td>0.155591</td>
<td>-2.871315</td>
</tr>
<tr>
<td>N</td>
<td>0.204372</td>
<td>0.163668</td>
<td>-2.047244</td>
</tr>
<tr>
<td>C</td>
<td>-0.896079</td>
<td>0.302901</td>
<td>-2.871165</td>
</tr>
<tr>
<td>C</td>
<td>-0.470165</td>
<td>0.351652</td>
<td>-4.248883</td>
</tr>
<tr>
<td>C</td>
<td>0.896535</td>
<td>0.261079</td>
<td>-4.249056</td>
</tr>
<tr>
<td>C</td>
<td>-2.218702</td>
<td>0.421765</td>
<td>-2.433713</td>
</tr>
<tr>
<td>C</td>
<td>-2.655099</td>
<td>0.458001</td>
<td>-1.105594</td>
</tr>
<tr>
<td>N</td>
<td>-1.838086</td>
<td>0.346844</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.655099</td>
<td>0.458001</td>
<td>1.105594</td>
</tr>
<tr>
<td>C</td>
<td>-4.026519</td>
<td>0.635531</td>
<td>0.684416</td>
</tr>
<tr>
<td>C</td>
<td>-4.026519</td>
<td>0.635531</td>
<td>-0.684416</td>
</tr>
<tr>
<td>C</td>
<td>-2.218702</td>
<td>0.421765</td>
<td>2.433713</td>
</tr>
<tr>
<td>C</td>
<td>-0.896079</td>
<td>0.302901</td>
<td>2.871165</td>
</tr>
<tr>
<td>N</td>
<td>0.204372</td>
<td>0.163668</td>
<td>2.047244</td>
</tr>
<tr>
<td>C</td>
<td>1.312617</td>
<td>0.155591</td>
<td>2.871315</td>
</tr>
<tr>
<td>C</td>
<td>0.896535</td>
<td>0.261079</td>
<td>4.249056</td>
</tr>
<tr>
<td>C</td>
<td>-0.470165</td>
<td>0.351652</td>
<td>4.248883</td>
</tr>
<tr>
<td>Ti</td>
<td>0.165312</td>
<td>-0.393372</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-0.009364</td>
<td>-2.272432</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.639591</td>
<td>0.098773</td>
<td>2.432673</td>
</tr>
<tr>
<td>O</td>
<td>-2.823189</td>
<td>-3.066780</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.569151</td>
<td>0.275190</td>
<td>5.105114</td>
</tr>
<tr>
<td>H</td>
<td>-1.135702</td>
<td>0.453932</td>
<td>-5.104474</td>
</tr>
<tr>
<td>H</td>
<td>5.315994</td>
<td>0.097073</td>
<td>1.355601</td>
</tr>
<tr>
<td>H</td>
<td>-4.876222</td>
<td>0.749739</td>
<td>-1.355496</td>
</tr>
<tr>
<td>H</td>
<td>-1.135702</td>
<td>0.453932</td>
<td>5.104474</td>
</tr>
<tr>
<td>H</td>
<td>-4.876222</td>
<td>0.749739</td>
<td>1.355496</td>
</tr>
<tr>
<td>H</td>
<td>1.569151</td>
<td>0.275190</td>
<td>-5.105114</td>
</tr>
<tr>
<td>H</td>
<td>5.315994</td>
<td>0.097073</td>
<td>-1.355601</td>
</tr>
<tr>
<td>H</td>
<td>3.412301</td>
<td>0.102381</td>
<td>3.204358</td>
</tr>
<tr>
<td>H</td>
<td>-2.984496</td>
<td>0.522438</td>
<td>3.205670</td>
</tr>
<tr>
<td>H</td>
<td>-2.984496</td>
<td>0.522438</td>
<td>-3.205670</td>
</tr>
<tr>
<td>H</td>
<td>3.412301</td>
<td>0.102381</td>
<td>-3.204358</td>
</tr>
<tr>
<td>H</td>
<td>-3.136961</td>
<td>-2.151780</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-1.854390</td>
<td>-2.958370</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the 1LMCT(A'') outer (biradicalic) minimum geometry of the TiOP-H$_2$O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

<table>
<thead>
<tr>
<th>Atom</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.504798</td>
<td>0.376004</td>
<td>4.251174</td>
</tr>
<tr>
<td>C</td>
<td>-0.928000</td>
<td>0.276997</td>
<td>2.870533</td>
</tr>
<tr>
<td>N</td>
<td>0.173213</td>
<td>0.175192</td>
<td>2.049851</td>
</tr>
<tr>
<td>C</td>
<td>1.277777</td>
<td>0.220454</td>
<td>2.869271</td>
</tr>
<tr>
<td>C</td>
<td>0.861755</td>
<td>0.341133</td>
<td>4.250364</td>
</tr>
<tr>
<td>C</td>
<td>-2.256300</td>
<td>0.308076</td>
<td>2.435441</td>
</tr>
<tr>
<td>C</td>
<td>-2.699073</td>
<td>0.289232</td>
<td>1.107664</td>
</tr>
<tr>
<td>N</td>
<td>-1.880485</td>
<td>0.205426</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.699073</td>
<td>0.289232</td>
<td>-1.107664</td>
</tr>
<tr>
<td>C</td>
<td>-4.077288</td>
<td>0.388837</td>
<td>-0.686316</td>
</tr>
<tr>
<td>C</td>
<td>-4.077288</td>
<td>0.388837</td>
<td>0.686316</td>
</tr>
<tr>
<td>C</td>
<td>-2.256300</td>
<td>0.308076</td>
<td>-2.435441</td>
</tr>
<tr>
<td>C</td>
<td>-0.928000</td>
<td>0.276997</td>
<td>-2.870533</td>
</tr>
<tr>
<td>N</td>
<td>0.173213</td>
<td>0.175192</td>
<td>-2.049851</td>
</tr>
<tr>
<td>C</td>
<td>1.277777</td>
<td>0.220454</td>
<td>-2.869271</td>
</tr>
<tr>
<td>C</td>
<td>0.861755</td>
<td>0.341133</td>
<td>-4.250364</td>
</tr>
<tr>
<td>C</td>
<td>-0.504798</td>
<td>0.376004</td>
<td>-4.251174</td>
</tr>
<tr>
<td>C</td>
<td>-2.606314</td>
<td>0.188423</td>
<td>-2.431313</td>
</tr>
<tr>
<td>C</td>
<td>3.044040</td>
<td>0.154641</td>
<td>-1.103448</td>
</tr>
<tr>
<td>N</td>
<td>2.222962</td>
<td>0.104884</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.044040</td>
<td>0.154641</td>
<td>1.103448</td>
</tr>
<tr>
<td>C</td>
<td>4.428250</td>
<td>0.215109</td>
<td>0.683541</td>
</tr>
<tr>
<td>C</td>
<td>4.428250</td>
<td>0.215109</td>
<td>-0.683541</td>
</tr>
<tr>
<td>Ti</td>
<td>0.153125</td>
<td>-0.473649</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>0.058433</td>
<td>-2.282345</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.606314</td>
<td>0.188423</td>
<td>2.431313</td>
</tr>
<tr>
<td>O</td>
<td>-2.090500</td>
<td>2.855048</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.536179</td>
<td>0.402010</td>
<td>5.103069</td>
</tr>
<tr>
<td>H</td>
<td>-1.174323</td>
<td>0.470463</td>
<td>-5.104714</td>
</tr>
<tr>
<td>H</td>
<td>5.283431</td>
<td>0.265273</td>
<td>1.355708</td>
</tr>
<tr>
<td>H</td>
<td>-4.932267</td>
<td>0.471138</td>
<td>-1.355893</td>
</tr>
<tr>
<td>H</td>
<td>-1.174323</td>
<td>0.470463</td>
<td>5.104714</td>
</tr>
<tr>
<td>H</td>
<td>-4.932267</td>
<td>0.471138</td>
<td>1.355893</td>
</tr>
<tr>
<td>H</td>
<td>1.536179</td>
<td>0.402010</td>
<td>-5.103069</td>
</tr>
<tr>
<td>H</td>
<td>5.283431</td>
<td>0.265273</td>
<td>-1.355708</td>
</tr>
<tr>
<td>H</td>
<td>3.378697</td>
<td>0.230649</td>
<td>3.202448</td>
</tr>
<tr>
<td>H</td>
<td>-3.024879</td>
<td>0.385853</td>
<td>3.207654</td>
</tr>
<tr>
<td>H</td>
<td>-3.024879</td>
<td>0.385853</td>
<td>-3.207654</td>
</tr>
<tr>
<td>H</td>
<td>3.378697</td>
<td>0.230649</td>
<td>-3.202448</td>
</tr>
<tr>
<td>H</td>
<td>-3.248782</td>
<td>-2.116988</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.690932</td>
<td>-2.901248</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the 1LMCT(A') outer (biradicalic) minimum geometry of the TiOP-H$_2$O complex optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

FINAL HEAT OF FORMATION = -1988.932060

<table>
<thead>
<tr>
<th>Atomic Symbol</th>
<th>X-Coordinate</th>
<th>Y-Coordinate</th>
<th>Z-Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.484176</td>
<td>0.391966</td>
<td>4.253883</td>
</tr>
<tr>
<td>C</td>
<td>-0.907262</td>
<td>0.289323</td>
<td>2.872190</td>
</tr>
<tr>
<td>N</td>
<td>0.195779</td>
<td>0.195008</td>
<td>2.052559</td>
</tr>
<tr>
<td>C</td>
<td>1.298734</td>
<td>0.242477</td>
<td>2.870813</td>
</tr>
<tr>
<td>C</td>
<td>0.882089</td>
<td>0.364672</td>
<td>4.252925</td>
</tr>
<tr>
<td>C</td>
<td>-2.235316</td>
<td>0.297252</td>
<td>2.437011</td>
</tr>
<tr>
<td>C</td>
<td>-2.679564</td>
<td>0.272712</td>
<td>1.107157</td>
</tr>
<tr>
<td>N</td>
<td>-1.860374</td>
<td>0.238762</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>-2.679564</td>
<td>0.272712</td>
<td>-1.107157</td>
</tr>
<tr>
<td>C</td>
<td>-4.062540</td>
<td>0.305243</td>
<td>-0.686636</td>
</tr>
<tr>
<td>C</td>
<td>-4.062540</td>
<td>0.305243</td>
<td>0.686636</td>
</tr>
<tr>
<td>C</td>
<td>-2.235316</td>
<td>0.297252</td>
<td>-2.437011</td>
</tr>
<tr>
<td>C</td>
<td>-0.907262</td>
<td>0.289323</td>
<td>-2.872190</td>
</tr>
<tr>
<td>N</td>
<td>0.195779</td>
<td>0.195008</td>
<td>-2.052559</td>
</tr>
<tr>
<td>C</td>
<td>1.298734</td>
<td>0.242477</td>
<td>-2.870813</td>
</tr>
<tr>
<td>C</td>
<td>0.882089</td>
<td>0.364672</td>
<td>-4.252925</td>
</tr>
<tr>
<td>C</td>
<td>-0.484176</td>
<td>0.391966</td>
<td>-4.253883</td>
</tr>
<tr>
<td>C</td>
<td>2.627475</td>
<td>0.199789</td>
<td>-2.431606</td>
</tr>
<tr>
<td>C</td>
<td>3.064104</td>
<td>0.154461</td>
<td>-1.103484</td>
</tr>
<tr>
<td>N</td>
<td>2.242923</td>
<td>0.107732</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>3.064104</td>
<td>0.154461</td>
<td>1.103484</td>
</tr>
<tr>
<td>C</td>
<td>4.449555</td>
<td>0.204497</td>
<td>0.683207</td>
</tr>
<tr>
<td>C</td>
<td>4.449555</td>
<td>0.204497</td>
<td>-0.683207</td>
</tr>
<tr>
<td>Ti</td>
<td>0.160939</td>
<td>-0.446230</td>
<td>0.000000</td>
</tr>
<tr>
<td>O</td>
<td>-0.076249</td>
<td>-2.237023</td>
<td>0.000000</td>
</tr>
<tr>
<td>C</td>
<td>2.627475</td>
<td>0.199789</td>
<td>2.431606</td>
</tr>
<tr>
<td>O</td>
<td>-2.873189</td>
<td>-2.946196</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>1.556034</td>
<td>0.428313</td>
<td>5.105818</td>
</tr>
<tr>
<td>H</td>
<td>-1.153946</td>
<td>0.482631</td>
<td>-5.107673</td>
</tr>
<tr>
<td>H</td>
<td>5.305035</td>
<td>0.249656</td>
<td>1.355359</td>
</tr>
<tr>
<td>H</td>
<td>-4.921121</td>
<td>0.341568</td>
<td>-1.355695</td>
</tr>
<tr>
<td>H</td>
<td>-1.153946</td>
<td>0.482631</td>
<td>5.107673</td>
</tr>
<tr>
<td>H</td>
<td>-4.921121</td>
<td>0.341568</td>
<td>1.355695</td>
</tr>
<tr>
<td>H</td>
<td>1.556034</td>
<td>0.428313</td>
<td>-5.105818</td>
</tr>
<tr>
<td>H</td>
<td>5.305035</td>
<td>0.249656</td>
<td>-1.355359</td>
</tr>
<tr>
<td>H</td>
<td>3.400943</td>
<td>0.240563</td>
<td>3.201695</td>
</tr>
<tr>
<td>H</td>
<td>-3.005628</td>
<td>0.351667</td>
<td>3.209593</td>
</tr>
<tr>
<td>H</td>
<td>3.400943</td>
<td>0.240563</td>
<td>-3.201695</td>
</tr>
<tr>
<td>H</td>
<td>-3.304845</td>
<td>-2.060153</td>
<td>0.000000</td>
</tr>
<tr>
<td>H</td>
<td>-0.949593</td>
<td>-2.680493</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the 2B_1 minimum geometry of the TiPOH$^\bullet$ radical optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.609511</td>
</tr>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-2.399081</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-3.357618</td>
</tr>
<tr>
<td>N</td>
<td>-1.448107</td>
<td>1.448107</td>
<td>0.040487</td>
</tr>
<tr>
<td>N</td>
<td>-1.448107</td>
<td>-1.448107</td>
<td>0.040487</td>
</tr>
<tr>
<td>N</td>
<td>1.448107</td>
<td>-1.448107</td>
<td>0.040487</td>
</tr>
<tr>
<td>C</td>
<td>-3.488507</td>
<td>2.521364</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>-3.488507</td>
<td>2.521364</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>-2.809134</td>
<td>1.248414</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>-2.809134</td>
<td>-1.248414</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>2.809134</td>
<td>1.248414</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>-1.248414</td>
<td>2.809134</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>-1.248414</td>
<td>-2.809134</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>1.248414</td>
<td>2.809134</td>
<td>0.112400</td>
</tr>
<tr>
<td>C</td>
<td>2.521364</td>
<td>3.488507</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>-2.521364</td>
<td>3.488507</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>-2.521364</td>
<td>-3.488507</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>2.521364</td>
<td>-3.488507</td>
<td>0.215121</td>
</tr>
<tr>
<td>C</td>
<td>-3.438942</td>
<td>0.000000</td>
<td>0.124429</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>-3.438942</td>
<td>0.124429</td>
</tr>
<tr>
<td>C</td>
<td>3.438942</td>
<td>0.000000</td>
<td>0.124429</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>3.438942</td>
<td>0.124429</td>
</tr>
<tr>
<td>H</td>
<td>2.649074</td>
<td>4.567298</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>-2.649074</td>
<td>-4.567298</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>-2.649074</td>
<td>4.567298</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>2.649074</td>
<td>-4.567298</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>4.567298</td>
<td>2.649074</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>4.567298</td>
<td>-2.649074</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>-4.567298</td>
<td>2.649074</td>
<td>0.291982</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>4.529435</td>
<td>0.187631</td>
</tr>
<tr>
<td>H</td>
<td>4.529435</td>
<td>0.000000</td>
<td>0.187631</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>-4.529435</td>
<td>0.187631</td>
</tr>
<tr>
<td>H</td>
<td>-4.529435</td>
<td>0.000000</td>
<td>0.187631</td>
</tr>
</tbody>
</table>
Cartesian coordinates (in Ångstrom) of the 2A_1 minimum geometry of the TiPOH* radical optimized with the DFT/B3LYP/cc-pVDZ(TZVP at Ti) method.

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-0.630872</td>
</tr>
<tr>
<td>O</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-3.454724</td>
</tr>
<tr>
<td>H</td>
<td>-1.454121</td>
<td>1.454121</td>
<td>0.026087</td>
</tr>
<tr>
<td>H</td>
<td>-1.454121</td>
<td>-1.454121</td>
<td>0.026087</td>
</tr>
<tr>
<td>H</td>
<td>1.454121</td>
<td>1.454121</td>
<td>0.026087</td>
</tr>
<tr>
<td>C</td>
<td>-3.489543</td>
<td>2.522566</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-3.489543</td>
<td>-2.522566</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-3.489543</td>
<td>-2.522566</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-3.489543</td>
<td>2.522566</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-2.811786</td>
<td>1.249909</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>-2.811786</td>
<td>-1.249909</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>2.811786</td>
<td>-1.249909</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>2.811786</td>
<td>1.249909</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>-1.249909</td>
<td>2.811786</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>-1.249909</td>
<td>-2.811786</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>1.249909</td>
<td>-2.811786</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>1.249909</td>
<td>2.811786</td>
<td>0.108027</td>
</tr>
<tr>
<td>C</td>
<td>2.522566</td>
<td>3.489543</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-2.522566</td>
<td>3.489543</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-2.522566</td>
<td>-3.489543</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>2.522566</td>
<td>-3.489543</td>
<td>0.227497</td>
</tr>
<tr>
<td>C</td>
<td>-3.441274</td>
<td>0.000000</td>
<td>0.120452</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>-3.441274</td>
<td>0.120452</td>
</tr>
<tr>
<td>C</td>
<td>3.441274</td>
<td>0.000000</td>
<td>0.120452</td>
</tr>
<tr>
<td>C</td>
<td>0.000000</td>
<td>3.441274</td>
<td>0.120452</td>
</tr>
<tr>
<td>H</td>
<td>2.648734</td>
<td>4.567409</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>-2.648734</td>
<td>-4.567409</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>-2.648734</td>
<td>4.567409</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>2.648734</td>
<td>-4.567409</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>4.567409</td>
<td>2.648734</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>4.567409</td>
<td>-2.648734</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>-4.567409</td>
<td>-2.648734</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>-4.567409</td>
<td>2.648734</td>
<td>0.316539</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>4.530952</td>
<td>0.191565</td>
</tr>
<tr>
<td>H</td>
<td>4.530952</td>
<td>0.000000</td>
<td>0.191565</td>
</tr>
<tr>
<td>H</td>
<td>0.000000</td>
<td>-4.530952</td>
<td>0.191565</td>
</tr>
<tr>
<td>H</td>
<td>-4.530952</td>
<td>0.000000</td>
<td>0.191565</td>
</tr>
</tbody>
</table>